<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>

            矩陣的分解及其應用

            時間:2024-07-18 15:13:43 數學畢業論文 我要投稿
            • 相關推薦

            矩陣的分解及其應用

            矩陣的分解及其應用

            摘要

            矩陣分解在矩陣的理論研究及其應用中有重要的意義。本文介紹了矩陣的幾種分解方法:3角分解、正交角分解、滿秩分解、譜分解,以及各種分解方法的應用。
            關鍵詞:矩陣;分解;3角分解;滿秩分解;正交分解;譜分解

            Matrix Decompose and its Applications


            ABSTRACT

            Matirx decompose have very important roles in the matrix theory and application studying. In this paper, several kinds of matrix decomposition , such as triangular decomposition, full rank decomposition n, full rank decomposition and spectral decomposition, have been introduced. And the applications of these matrix decomposition have also been given.
            Key word: matrix; decomposition; triangular decomposition; full rank decomposition; full rank decomposition; spectral decomposition

            【矩陣的分解及其應用】相關文章:

            矩陣的分解與應用03-07

            矩陣分解以及應用03-07

            矩陣函數的性質及其應用03-07

            矩陣對角化及其應用03-07

            矩陣的廣義逆及其應用03-07

            數學畢業論文-矩陣分解以及應用03-04

            矩陣分解與矩陣方程AX=B,AXB=C的解03-07

            數學畢業論文-矩陣分解與矩陣方程AX=B,AXB=C的解03-04

            矩陣直積與拉直算子的有關性質及應用03-07

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院