實用的平行四邊形教案模板六篇
在教學工作者實際的教學活動中,常常需要準備教案,借助教案可以更好地組織教學活動。那么你有了解過教案嗎?下面是小編為大家收集的平行四邊形教案6篇,歡迎大家分享。

平行四邊形教案 篇1
【實驗目的】
驗證互成角度的兩個力合成時的平行四邊形定則。
【實驗原理】
等效法:使一個力F的作用效果和兩個力F1、F2的作用效果都是讓同一條一端固定的橡皮條伸長到某點,所以這一個力F就是兩個力F1和F2的合力,作出F的圖示,再根據平行四邊形定則作出F1和F2的合力F的圖示,比較F和F的大小和方向是否都相同。
【實驗器材】
方木板一塊、白紙、彈簧測力計(兩只)、橡皮條、細繩套(兩個)、三角板、刻度尺、圖釘(幾個)、細芯鉛筆。
【實驗步驟】
⑴用圖釘把白紙釘在水平桌面上的方木板上,并用圖釘把橡皮條的一端固定在A點,橡皮條的另一端拴上兩個細繩套。
⑵用兩只彈簧測力計分別鉤住細繩套,互成角度地拉像皮條,使橡皮條伸長到某一位置O,如圖所示,記錄兩彈簧測力計的讀數,用鉛筆描下O點的位置及此時兩細繩套的方向。
⑶只用一只彈簧測力計通過細繩套把橡皮條的結點拉到同樣的位置O,記下彈簧測力計的讀數和細繩套的方向。
⑷用鉛筆和刻度尺從結點O沿兩條細繩套方向畫直線,按選定的標度作出這兩只彈簧測力計的讀數F1和F2的圖示,并以F1和F2為鄰邊用刻度尺作平行四邊形,過O點畫平行四邊形的對角線,此對角線即為合力F的圖示。
⑸用刻度尺從O點按同樣的標度沿記錄的方向作出只用一只彈簧測力計的拉力F的圖示。
⑹比較一下,力F與用平行四邊形定則求出的合力F的大小和方向是否相同。
錦囊妙訣:白紙釘在木板處,兩秤同拉有角度,讀數畫線選標度,再用一秤拉同處,作出力的矢量圖。
交流與思考:每次實驗都必須保證結點的位置保持不變,這體現了怎樣的物理思想方法?若兩次橡皮條的伸長長度相同,能否驗證平行四邊形定則?
提示:每次實驗保證結點位置保持不變,是為了使合力的作用效果與兩個分力共同作用的效果相同,這是物理學中等效替換的思想方法。由于力不僅有大小,還有方向,若兩次橡皮條的伸長長度相同但結點位置不同,說明兩次效果不同,不滿足合力與分力的關系,不能驗證平行四邊形定則。
【誤差分析】
⑴用兩個測力計拉橡皮條時,橡皮條、細繩和測力計不在同一個平面內,這樣兩個測力計的水平分力的實際合力比由作圖法得到的合力小。
⑵結點O的位置和兩個測力計的方向畫得不準,造成作圖的誤差。
⑶兩個分力的起始夾角太大,如大于120,再重做兩次實驗,為保證結點O位置不變(即保證合力不變),則變化范圍不大,因而測力計示數變化不顯著,讀數誤差大。
⑷作圖比例不恰當造成作圖誤差。
交流與思考:實驗時由作圖法得到的合力F和單個測力計測量的實際合力F忘記標注而造成錯亂,你如何加以區分?
提示:由彈簧測力計測量合力時必須使橡皮筋伸直,所以與AO共線的合力表示由單個測力計測量得到的實際合力F,不共線的合力表示由作圖法得到的合力F。
【注意事項】
⑴不要直接以橡皮條端點為結點,可拴一短細繩連兩細繩套,以三繩交點為結點,應使結點小些,以便準確地記錄結點O的位置。
⑵使用彈簧秤前,應先調節零刻度,使用時不超量程,拉彈簧秤時,應使彈簧秤與木板平行。
⑶在同一次實驗中,橡皮條伸長時的.結點位置要相同。
⑷被測力的方向應與彈簧測力計軸線方向一致,拉動時彈簧不可與外殼相碰或摩擦。
⑸讀數時應正對、平視刻度。
⑹兩拉力F1和F2夾角不宜過小,作力的圖示,標度要一致。
交流與思考:如何設計實驗探究兩力合力隨角度的變化規律?如何觀察合力的變化規律?
提示:保持兩力的大小不變,改變兩力之間的夾角,使兩力的合力發生變化,可以通過觀察結點的位置變化,判斷合力大小的變化情況,結點離固定點越遠,說明兩力的合力越大。
【正確使用彈簧秤】
⑴彈簧秤的選取方法是:將兩只彈簧秤調零后互鉤水平對拉,若兩只彈簧在對拉過程中,讀數相同,則可選;若讀數不同,應另換彈簧,直至相同為止。
⑵彈簧秤不能在超出它的測量范圍的情況下使用。
⑶使用前要檢查指針是否指在零刻度線上,否則應校正零位(無法校正的要記錄下零誤差)。
⑷被測力的方向應與彈簧秤軸線方向一致,拉動時彈簧不可與外殼相碰或摩擦。
⑸讀數時應正對、平視刻度。
平行四邊形教案 篇2
教學過程
一、課堂引入
1.平行四邊形的性質;平行四邊形的判定;它們之間有什么聯系?
2.你能說說平行四邊形性質與判定的用途嗎?
(答:平行四邊形知識的運用包括三個方面:一是直接運用平行四邊形的性質去解決某些問題.例如求角的度數,線段的長度,證明角相等或線段相等等;二是判定一個四邊形是平行四邊形,從而判定直線平行等;三是先判定一個四邊形是平行四邊形,然后再眼再用平行四邊形的性質去解決某些問題.)
3.創設情境
實驗:請同學們思考:將任意一個三角形分成四個全等的三角形,你是如何切割的?(答案如圖)
圖中有幾個平行四邊形?你是如何判斷的?
二、例習題分析
例1(教材P98例4)如圖,點D、E、分別為△ABC邊AB、AC的中點,求證:DE∥BC且DE=BC.
分析:所證明的結論既有平行關系,又有數量關系,聯想已學過的知識,可以把要證明的`內容轉化到一個平行四邊形中,利用平行四邊形的對邊平行且相等的性質來證明結論成立,從而使問題得到解決,這就需要添加適當的輔助線來構造平行四邊形.
方法1:如圖(1),延長DE到F,使EF=DE,連接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四邊形BCFD是平行四邊形.所以DF∥BC,DF=BC,因為DE=DF,所以DE∥BC且DE=BC.
(也可以過點C作CF∥AB交DE的延長線于F點,證明方法與上面大體相同)
方法2:如圖(2),延長DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形.所以AD∥FC,且AD=FC.因為AD=BD,所以BD∥FC,且BD=FC.所以四邊形ADCF是平行四邊形.所以DF∥BC,且DF=BC,因為DE=DF,所以DE∥BC且DE=BC.
定義:連接三角形兩邊中點的線段叫做三角形的中位線.
【思考】:
(1)想一想:①一個三角形的中位線共有幾條?②三角形的中位線與中線有什么區別?
(2)三角形的中位線與第三邊有怎樣的關系?
(答:(1)一個三角形的中位線共有三條;三角形的中位線與中線的區別主要是線段的端點不同.中位線是中點與中點的連線;中線是頂點與對邊中點的連線.(2)三角形的中位線與第三邊的關系:三角形的中位線平行與第三邊,且等于第三邊的一半.)
三角形中位線的性質:三角形的中位線平行與第三邊,且等于第三邊的一半。
平行四邊形教案 篇3
四年級數學上冊《平行四邊形、梯形特征》教學設計教學目標:
1、學生理解平行四邊形和梯形的概念及特征。
2、使學生了解學過的所有四邊形之間的關系,并會用集合圖表示。
3、通過操作活動,使學生經歷認識平行四邊形和梯形的全過程,掌握它們的特征。
4、通過活動,讓學生從中感受到學習的樂趣,體會到成功的喜悅,從而提高學習的興趣。
教學重點:理解平行四邊形和梯形的概念及特征。了解學過的所有四邊形之間的關系,并會用集合圖表示。
教學難點:理解平行四邊形和梯形的概念及特征。用集合圖表示學過的所有四邊形之間的關系。
教具準備:圖形、剪子、七巧板。
教學過程:
一、創設情景 感知圖形
1、出示校園圖(70頁)在我們美麗的校園中,你能找到那些四邊形?
2、畫出你喜歡的一個四邊形。說一說什么樣的圖形是四邊形?
展示學生畫出的四邊形,請學生標出它們的名稱。
長方形 平行四邊形
梯形 正方形
3、小組交流:從四邊形的特點來看,四邊形可以分成幾類?學生討論交流。
二、探究新知
1、歸納平行四邊形和梯形的`概念。
有什么特點的圖形是平行四邊形?(兩組對邊分別平行的四邊形叫做平行四邊形。)
強調說明:只要四邊形的每組對邊分別平行,就能確定它的每組對邊相等。因此平行四邊形的定義是兩組對邊分別平行的四邊形。
提問:生活中你見過這樣的圖形嗎?它們的外形像什么?
這些圖形有幾條邊?幾個角?是什么圖形?
這幾個四邊形有邊有什么特點?
它是平行四邊形嗎?
你們在量這些圖形時,是否發現它們都有一個共同的特點?如果有,是什么?
只有一組對邊平行的四邊形叫做梯形。
5、現在你有什么問題嗎?
長方形和正方形是平行四邊形嗎?為什么?
6、用集合圖表示四邊形之間的關系。我們學過的長方形、正方形、平行四邊形、剛剛認識的梯形,你能用這個集合圈來表示他們的關系嗎?
7、判斷:
長方形是特殊的平行四邊形。( )
兩個完全一樣的梯形可以拼成一個平行四邊形。( )
一個梯形中只有一組對邊平行。( )
三、鞏固練習。
1、在梯形里畫兩條線段,把它分割成三個三角形。你有幾種畫法?學生展示
2、七巧板拼一拼
用兩塊拼一個梯形
用三塊拼一個梯形
用一套七巧板拼一個平行四邊形
1、 下面的圖形中有( )個大小不同的梯形。
2、 用兩個完全一樣的梯形,能拼成一個平行四邊形嗎?
把1張梯形紙剪一次,再拼成一個平行四邊形。
拿一張長方行紙,不對折,剪一次,再拼出一個梯形。
四、課堂小結:通過這節課的學習,你有何體會和收獲?
五、作業:
1、把一個平行四邊形剪成兩個圖形,然后拼成一個三角形,這個三角是什么三角形?有幾種剪拼的方法?
2、把一張平行四邊形的紙剪一下,分成兩個梯形,有多少種剪法?
平行四邊形教案 篇4
教學目標
1.通過生活情景與實踐操作,直觀認識平行四邊形。
2.在觀察與比較中,使學生在頭腦里建成長方形與四邊形間的區別與聯系。
3.體會平行四邊形與生活的密切聯系。
教學重難點
通過生活情景與實踐操作,直觀認識平行四邊形。
教學準備
教具:活動長方形框架點子圖。
學具:七巧板。課時
安排1
教學過程
一、利用學具逐步探究
1.拉一拉
發給每位學生一個長方形的學具。輕輕地動手拉一拉,看看它發生了什么變化?
生動手操作,交流自己的發現。學生會發現長方形向一邊傾斜了,角的大小發生了變化等等。程度較好的學生會說出長方形變成了平行四邊形。
教師將拉成的平行四邊形貼在黑板上。引出課題并板書:平形四邊形
長方形和平行四邊形哪些地方相同,哪些地方不同呢?利用你們的學具,在四人小組里討論。
(1)小組觀察、討論。教師到各個小組中指導,引導他們從邊和角兩個方面探究。
(2)分組匯報,小組之間互相補充。得出:平行四邊形和長方形一樣,都有四條邊,四個角,對邊相等。不同的是,長方形四個角都是直角,而平行四邊形一組對角是鈍角,一組對角是銳角。
(設計意圖:讓學生親自動手操作,經歷將長方形拉成平行四邊形的過程。在學生初步感知平行四邊的基礎上,探索平行四邊形與長方形的聯系和區別,幫助學生建立平行四邊形的模型。)
2.猜一猜:[課件出示如果這些圖形都是可活動的,估計哪些能拉成平行四邊形,哪些不能拉成平行四邊形,為什么?
讓學生安安靜靜的思考后,交流看法。平行四邊形有四條邊,所以三角形和五邊形不能拉成。普通四邊形的對邊不相等,也不能拉成。正方形能拉成特殊的平行四邊形:菱形。長方形可以拉成平行四邊形。
請在導入時得到學具獎勵的學生上臺利用學具拉一拉,驗證大家的猜測)
3.認一認:
讓學生判斷大屏幕上的`圖形是平形四邊形嗎?[課件出示]
學生逐一回答。教師隨即追問為什么第三、第五個圖形不是平形四邊形?)
4.找一找:
給出一幅畫,讓學生從這幅畫中找到平行四邊形
課件出示畫面:在小花園里,有菱形的瓷磚、伸縮們、回廊……圖中蘊含著各種各樣的平行四邊形。學生匯報后,讓他們數一數中有幾個平行四邊形。
師:除此之外,你還能從生活中找到它嗎?
二、動手操作拓展延伸:
1.畫一畫:
(1)生利用尺子、鉛筆在點子圖上畫平形四邊形。畫好后,在小組里互相交流。
(2)利用展臺展示學生作品。如果出現錯誤,讓學生當“小老師”互相糾正。
2.拼一拼:
用七巧板拼成一個平行四邊形,同桌兩人一組,比一比,哪個組拼的方法最巧妙。
(1)請三組同桌在黑板上拼,其余學生分組在下面拼。教師巡視,發現巧妙的拼法,讓其展示在黑板上。
(2)選擇一個你最喜歡的平行四邊形,說一說它是用什么形狀的七巧板拼成的。
三、課堂
1.這節課你有什么收獲?
2.師:只要注意積累,你們的知識會越來越多!
平行四邊形教案 篇5
【教學目標】
1、知識與技能:
探索與應用平行四邊形的對角線互相平分的性質,理解平行線間的距離處處相等的結論,學會簡單推理。
2、過程與方法:
經歷探索平行四邊形性質的過程,進一步發展學生的邏輯推理能力及有條理的表達能力。
3、情感態度與價值觀:
在探索平行四邊形性質的過程中,感受幾何圖形中呈現的數學美。讓學生學會在獨立思考的基礎上積極參與對數學問題的討論,享受運用知識解決問題的成功體驗,增強學好數學的自信心。
【教學重點】:
探索并掌握平行四邊形的對角線互相平分和平行線間的距離處處相等的性質。
【教學難點】:
發展合情推理及邏輯推理能力
【教學方法】:
啟發誘導法,探索分析法
【教具準備】:多媒體課件
【教學過程設計】
第一環節回顧思考,引入新課
什么叫平行四邊形?
平行四邊形都有哪些性質?
利用平行四邊形的性質,我們可以解決相關的計算問題。阿凡提是傳說中很聰明的人。一天,財主巴依遇到阿凡提,想考一考聰明的阿凡提,說:給你兩塊地,一塊是平行四邊形形狀的`(如下圖,AB=10,OA=3,BC=8),還有一塊是邊長是7的正方形EFGH土地,讓你來選一下,哪一塊面積更大?
[學生活動]此時,學生的積極性被調動起來,努力試圖尋找各種途徑來求平行四邊形的面積,但找不到合適的解決辦法.
[教學內容]教師乘機引出課題,明確學習任務.
第二環節探索發現,應用深化
1、做一做:(電腦顯示P100“做一做”的內容)
如圖4-2,□ABCD的兩條對角線AC,BD相交于點O,
(1)圖中有哪些三角形是全等的?有哪些線段是相等的?
(2)能設法驗證你的猜想嗎?
[教師活動]教師將前后四名同學分成一組,學生拿出事先準備好的平行四邊形及實驗工具(刻度尺、剪刀、圖釘),嘗試在交流合作中動手探究平行四邊形的對角線有何性質.
2、觀察、討論:(小組交流)
通過以上活動,你能得到哪些結論?并由各小組派學生表述看法。
[教師活動]探究結束后,分組展示結果,教師利用課件展示“旋轉法”的實驗過程,增強教學的直觀性.
結論:平行四邊形的對角線互相平分。
[教師活動]“實驗都是有誤差的,我們能否對此進行理論證明?”
[學生活動]此問題難度不大.
[教師活動]教師讓學生口述證明過程.最后師生共同歸納出“平行四邊形的對角線互相平分”這條性質.
活動二
剛才財主巴依提出的問題你能解決嗎?
學生口述過程,教師最后給出規范的解題過程。
練一練:
財主不服氣,又想考阿凡提,說過點O做一直線EF,交邊AD于點E,交BC于點F.直線EF繞點O旋轉的過程中(點E與A、D不重合),你能知道這里有多少對全等三角形嗎?
[教師活動]此處組織學生搶答,互相補充完善后,學生答出了全部的全等三角形.
活動三
電腦顯示P101關于鐵軌的圖片
提出問題:“想一想”
已知,直線a/pic/p>
(1)線段AC,BD所在直線有什么樣的位置關系?
(2)比較線段AC,BD的長。
引出平行線間距離的概念,并引導學生對比點到直線的距離,兩點間距離等概念。
(讓學生進一步感知生活中處處有數學)
A.(學生思考、交流)
B.(師生歸納)
解(1)由AC⊥b,BD⊥b,得AC/pic/p>
(2)a/pic/pic/p>
→AC=BD
歸納:
若兩條直線平行,則其中一條直線上任意兩點到另一條直線的距離相等,這個距離稱為平行線間的距離。
即平行線間的距離相等。
[議一議]:
舉你能舉出反映“平行線之間的垂直段處處相等實例嗎”?
活動目的:
通過生活中的實例的應用,深化對知識的理解。
第三環節鞏固反饋,總結提高
1、說一說下列說法正確嗎
①平行四邊形是軸對稱圖形()
②平行四邊形的邊相等()
③平行線間的線段相等()
④平行四邊形的對角線互相平分()
2、已知,平行四邊形ABCD的周長是28,對角線AC,BD相交于點O,且△OBC的周長比△OBA的周長大4,則AB=
3、已知P為平行四邊形ABCD的邊CD上的任意點,則△APB與平行四邊形ABCD的面積比為
4、平行四邊形ABCD中,AC,DB交于點O,AC=10。DB=12,則AB的取值范圍是什么?
5、平行四邊形ABCD的兩條對角線相交于O,OA,OB,AB的長度分別為3cm、4cm、5cm,求其它各邊以及兩條對角線的長度。
第四環節評價反思,目標回顧
活動內容:
本節課你有哪些收獲?你能將平行四邊形的性質進行歸納嗎?
[布置作業]:
P102習題4.21,2,3
探究題已知如下圖,在ABCD中,AC與BD相交于點O,點E,F在AC上,且BE∥DF.求證:BE=DF
平行四邊形教案 篇6
教學要求:
1.鞏固平行四邊形的面積計算公式,能比較熟練地運用平行四邊形面積的計算公式解答有關應用題。
2.養成良好的審題習慣。
教學重點:運用所學知識解答有關平行四邊形面積的應用題。
教學過程:
一、基本練習
1.口算。(練習十六第4題)
4.90.75.4+2.640.250.87-0.49
530+2703.50.2542-98612
2.平行四邊形的面積是什么?它是怎樣推導出來的?
3.口算下面各平行四邊形的`面積。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2.5厘米,高4厘米
二、指導練習
1.補充題:一塊平行四邊形的麥地底長250米,高是78米,它的面積是多少平方米?
⑴生獨立列式解答,集體訂正。
⑵如果問題改為:每公頃可收小麥7000千克,這塊地共可收小麥多少千克?①必須知道哪兩個條件?
②生獨立列式,集體講評:
先求這塊地的面積:25078010000=1.95公頃,
再求共收小麥多少千克:70001.95=13650千克
⑶如果問題改為:一共可收小麥58500千克,平均每公頃可收小麥多少千克?又該怎樣想?
與⑵比較,從數量關系上看,什么相同?什么不同?
討論歸納后,生自己列式解答:58500(250781000)
⑷小結:上述幾題,我們根據一題多變的練習,尤其是變式后的兩道題,都是要先求面積,再變換成地積后才能進入下一環節,否則就會出問題。
2.練習十七第6題:下土重量各平行四邊形的面積相等嗎?為什么?每個平行四邊形的面積是多少?
1.6厘米
2.5厘米
⑴你能找出圖中的兩個平行四邊形嗎?
⑵他們的面積相等嗎?為什么?
⑶生計算每個平行四邊形的面積。
⑷你可以得出什么結論呢?(等底等高的平行四邊形的面積相等。)
3.練習十七第10題:已知一個平行四邊形的面積和底,(如圖),求高。
28平方米
7米
分析與解:因為平行四邊形的面積=底高,如果已知平行四邊形的面積是28平方米,底是7米,求高就用面積除以底就可以了。
三、課堂練習
練習十六第7題。
四、作業
練習十六第5、8、9、11題。
【平行四邊形教案】相關文章:
平行四邊形的面積教案09-02
《平行四邊形的性質》教案08-13
平行四邊形的面積教案07-24
平行四邊形的認識教案07-30
平行四邊形教案優秀01-22
平行四邊形的認識教案12-09
《平行四邊形的面積》教案12-09
【精選】平行四邊形教案四篇07-25
[優選]平行四邊形教案優秀03-20
精選平行四邊形教案五篇09-25