一元一次方程教案
作為一位杰出的教職工,時常要開展教案準備工作,借助教案可以讓教學工作更科學化。來參考自己需要的教案吧!下面是小編幫大家整理的一元一次方程教案,歡迎閱讀與收藏。

一元一次方程教案1
教學目標
1、使學生能根據商品銷售問題中的數量關系找出等量關系,列出方程,掌握商品盈虧的求法,;
2、培養學生分析問題,解決實際問題的能力;
3、讓學生在實際生活問題中,感受到數學的價值。
教學難點 讓學生知道商品銷售中的盈虧的算法。
知識重點 弄清商品銷售中的進價標價售價及利潤的含義。
教學過程(師生活動)設計理念
引言前面我們結合實際問題,討論了如何分析數量關系,利用相等關系列方程以及如何解方程。本節開始,我們將進一步探究如何用一元一次方程解決生活中的一些實際問題。利用一元一次方程解決實際問題前面已有所討論,本節承上啟下,進一步探究用一元一次方程解決生活中的實際問題。
引例①某商品原來每件零售價是元,現在每件降價 ,降價后每件零售價是 ;
②某種品牌的彩電降價 以后,每臺售價為 元,則該品牌彩電每臺原價應為 元;
③某商品按定價的八折出售,售價是 元,則原定價是 ;
④某商場把進價為1980元的商品按標價的八折出售,仍獲利 ,則該商品的'標價為 ;
⑤我國政府為解決老百姓看病問題,決定下調藥品的價格,某種藥品在1999年漲價30%后,20xx降價70%至 元,則這種藥品在1999年漲價前價格為 元。學生對進價、標價、售價、打折等商品銷售中的一些概念的含義已有一定的知識積累,通過引例,使學生在已有的知識經驗基礎上引入新課。
提出問題
探究新知問題(教科書93頁探究1):某商店在某一時間以每件60元的價格賣兩件衣服,其中一件盈利還是虧損?或是不盈不虧?通過實際生活中的實例,用問題的形式來探究新課內容,使學生感受數學來源于生活,生活中需要數學。
討論交流解決問題①引導學生大體估算盈虧情況;
②教師提出問題,學生自主討論解決;
(1)商品銷售中的盈虧如何計算?
(2)兩件衣服的進價、售價分別是多少?
③得出結論后,將結論與學生先前的估算進行比較;
④教師歸納解決問題的大致過程。先由學生估算(培養學生敏感意識)然后通過師生合作交流,學生自主探索,得出結論,讓學生品嘗成功的喜悅。
鞏固練習由學生自主探索解決。
問題:我國股市交易中每天、賣一次各交千分之七點五的各種費用,某投資者以每股10元的價格買入上海某股票1000股,當該股票漲到12元時全部賣出,該投資者實際盈利為多少?
鞏固本課中商品銷售盈虧的求法,再次使學生感受到數學的應用價值。
小結與作業
課堂小結通過以下問題引導學生小結:
①由學生談談本節課學到了哪些知識?學后有何感受?
②商品銷售中的基本等量關系有哪些?由學生概括本課中學到的知識,體現學生是學習的主人。
布置作業必做題:教科書97面習題2.4第2、3、4題;
備選題:
①某商品的進價是1000元,售價為1500元,由于情況不好,商店決定降價出售,但又要保證利潤率不低于5%,那么商店可降多少元出售此商品;
②一年定期的存款,年利率為 ,到期取款時須扣除利息的20%,作為利息稅上繳國庫,假如某人存入一年的定期儲蓄1000元,到期扣稅后可得利息多少元?
③某商場將某種DVD產品按進價提高35%,然后打出九折酬賓,外送50元打的費的廣告,結果每臺DVD仍獲利208元,則每臺DVD的進價是多少元?
④某企業生產一種產品,每件成本價是400元,銷售價為510元,本季度銷售了件,為進一步擴大市場,該企業決定在降低銷售的同時降低生產成本,經過市場調研,預測下季度這種產品每件銷售價降低4%,銷售量將提高10%,要使銷售利潤(銷售利潤=銷售價-成本價)保持不變,該產品每件的成本應降低多少元?
本課教育評注(課堂設計理念,實際教學效果及改進設想)
本課以學生已有的知識經驗和生活中的實例入手引入新課,在新授過程中,以學生為學習的主人教師進行適當引導、點拔、啟迪。在學生的自主探索、合作交流過程中弄清商品銷售中的盈虧的算法。加法對進價標價售價及利潤的實際意義的理解。使學生深切感受到數學生活實際中的應用。從而激發他們學習數學的興趣。另外學生通過對新授問題的估算,最后計算得出正確的結論,品嘗到成功的喜悅,從而也激發了學生探求知識的欲望。
一元一次方程教案2
一、背景與意義分析
本課安排在第1章有理數之后,屬于《全日制義務教育數學課程標準(實驗稿)中的數與代數領域。
方程有悠久的歷史,它隨著實踐需要而產生,被廣泛應用。從數學科學本身看,方程是代數學的核心內容,正是對于它的研究推動了整個代數學的發展。從代數中關于方程的分類看,一元一次方程是最簡單的代數方程,也是所有代數方程的基礎。
本課中引出了方程、一元一次方程等基本概念,并且對根據實際問題中的數量關系,設未知數,列出一元一次方程的分析問題過程進行了歸納。以方程為工具分析問題、解決問題,即建立方程模型是全章的重點,同時也是難點。分析實際問題中的數量關系并用一元一次方程表示其中的相等關系,是始終貫穿于全章主線,而對一元一次方程的有關概念和解法的討論,是在建立和運用方程這種數學模型的大背景之下進行的。列方程中蘊涵的數學建模思想是本課始終滲透的主要數學思想。
在小學階段,已學習了用算術方法解應用題,還學習了最簡單的方程。本小節先通過一個具體行程問題,引導學生嘗試如何用算術方法解決它,然后再一步一步引導學生列出含有未知數的式子表示有關的量,并進一步依據相等關系列出含有未知數的等式方程。這樣安排目的在于突出方程的根本特征,引出方程的定義,并使學生認識到方程是最方便、更有力的數學工具,從算術方法到代數方法是數學的進步。
算術表示用算術方法進行計算的程序,列算式是依據問題中的數量關系,算術中只能含已知數而不能含未知數。列方程也是依據問題中的數量關系(特別是相等關系),它打破了列算式時只能用已知數的限制,方程中可以根據需要含有相關的已知數和未知數,未知數進入式子是新的突破。正因如此,一般地說列方程要比列算式考慮起來更直接、更自然,因而有更多優越性。
二、學習與導學目標
1、知識積累與疏導:通過現實生活中的例子,體會到方程的意義,領悟一元一次方程的定義,會進行簡單的`辨別。
2、技能掌握與指導:能根據具體問題中的數量關系,列出方程,感悟到方程是刻畫現實世界的一個有效模型。利用率100%。
3、智能的提高與訓導:在與他人交流探究過程中,學會與老師對話、與同學合作,合理清晰地表達自己的思維過程。
4、情感修煉與開導:積極創設問題情景,認識到列方程解應用題的優越性,初步體會到從算式到方程是數學的進步的含義。
5、觀念確認與引導:通過經歷方程這一數學概念的形成與應用過程,感受到問題情境分析討論建立模型解釋應用轉換拓展的模式,從而更好地理解方程的意義。結合例題培養學生觀察、類比的能力和滲透數形結合思想。
三、障礙與生成關注
通過問題情境,建立數學模型,難度較大,為此要充分引導學生關注生活實際,仔細分析題目題意,促使學生朝數學模型方面理解。
四、學程與導程活動
(一)創設情景、引入新課
同學們知道南通市的東城區嗎?那寬廣的人民東路延伸段正吸引著許多投資者的目光,南通市最大的環保熱電廠已在東城區的新勝村拔地而起(圖片展示),讓我們乘36路公交車去感受一下吧!
假設36路公交車無障礙勻速行駛,途經小石橋、國勝東村、觀音山三地的時間如表所示:
地名時間
小石橋8:00
國勝東村8:09
觀音山8:17
新勝村在觀音山、國勝東村之間,到觀音山的路程有3千米,到國勝東村的路程有1千米,請問小石橋到新勝村的路程有多遠?
先讓學生讀題,然后教師指出:這是一個行程問題,而行程問題一般借助于直線型示意圖,教師首先畫出下圖,標出兩端地點。
小石橋觀音山
最后師生共同逐句分析,并提問:你從此題中可以獲得哪些信息,讓學生自由發揮,最后,教師作如下總結:
1、看表格有:
從小石橋到國勝東村有________分鐘;從小石橋到觀音山有_______分鐘;
從國勝東村到觀音山有______分鐘。
2、你能畫出汽車所經過四個地方的順序圖嗎?不妨試一試;對照示意圖,讓學生指出有關路程的信息。教師最后整理成如下示意圖:
小石橋國勝東村 新勝村觀音山
(二)動手實踐、發現新知
你會解決這個實際問題嗎?不妨試一試。(以同桌同學或前后兩桌為一組,討論交流一下此題怎樣解,教師巡視之后,請兩位同學上黑板板演,教師評講時,讓學生指出每個式子的意義。)
如果學生中有人利用方程做出,教師分析左右兩邊的意義;如果沒有,則作如下提示:
如果設小石橋到新勝村的路程為X千米,教師根據示意圖,提出下列問題,讓學生自主討論口答:
1、小石橋到國勝東村有_____千米,小石橋到觀音山有_____千米。
2、小石橋到國勝東村行車_____分鐘,小石橋到觀音山行車_____分鐘。
3、從小石橋到國勝東村的汽車速度為_____千米/分。
讓學生口答,請學生判斷修正,并提出此題中有哪些相等關系?從小石橋到國勝東村的汽車速度與從小石橋到觀音山的汽車速度相等嗎?由此啟發得出方程:
指出:以后我們將學習如何從此方程中解出未知數X,從而得出小石橋到新勝村的路程。
(三)類比分析、總結提高
1、方法解題時,列出的算式中只能用已知數表示;而方程是根據問題的相等關系列出的等式,其中既含有已知數,又含有未知數,即方程是含有未知數的等式。同學們也看到列方程比較方便,而算式較繁。
2、列方程的步驟
讓學生根據例子,總結出列方程的三步驟:(1)設字母表示未知數;(2)找出問題中的相等關系;(3)寫出含有未知數的等式方程。
3、對于上面問題,你還能列出其它方程嗎?如能,你依據哪個相等關系?(學生討論,代表發言)
(四)例題分析、揭示課題
同學們是否參加過學校的義務勞動呢?下面一起討論義務為學校搬運磚塊的問題。
例1、學校組織65名少先隊員為學校建花壇搬磚,六(1)班同學每人搬6塊,六(2)班同學每人搬8塊,總共搬了400塊,問六(1)班同學有多少人參加了搬磚?
1、這個問題已知條件較多,題中的數量關系較復雜,列算式不易直接求出答案,這時,教師抓住時機,引導學生分組討論,合作交流,幫助學生分析題意,分清已知量、未知量,尋找題中的相等關系。先讓學生試做,然后抓住時機,亮出如下表格,見機講解。
六(1)班六(2)班總數
參加人數
每人搬磚數68
共搬磚數 400
2、 通過上面所做的題目分析看出,有些問題利用算術方法解比較困難,而用方程解決比較簡單。由上面題目分析也得出:這些都是只含有一個未知數(元),并且未知數的指數是1(次)的方程叫做一元一次方程(板書課題:一元一次方程)
3、讓學生根據一元一次方程的定義,舉出一元一次方程的例子,師生對照定義進行分析評講。
4、例2:根據下列問題,設未知數并列出方程:
(1)一臺計算機已使用1700小時,預計每月再使用150小時,經過多少月這臺計算機的使用時間達到規定的檢修時間2450小時?
(2)一根長的鐵絲圍成一個長方形,使它的長是寬的1.5倍,長方形的長、寬各應是多少?
讓2位學生上黑板板演,其余科學生在下面做,然后,師生共同批改,批改時,對照一元一次方程的定義及列方程的步驟討論講解,并指出方程左右兩邊的意義。
(五)總結鞏固、初步應用
1 師生共同小結歸納
上面的分析過程可以表示如下:
設未知數找相等關系 列方程
實際問題
一元一次方程
分析實際問題中的數量關系,利用其中的相等關系列出方程,是用數學解決實際問題的一種方法。
2、練習:
(1) 環形跑道一周長,沿跑道跑多少周,可以跑?
(2) 甲種鉛筆每枝0.3元,乙種鉛筆每枝0.6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?
(3)一個梯形的下底比上底多,高,面積是,求上底。
2、 作業:課本73頁第1、5題。
五、筆記與板書提綱
課題例1例1示意圖
定義例2
列方程的分析過程歸納
六、練習與拓展選題
根據生活經歷,自編一道列方程應用題。
七、個別與重點輔導:學生姓名(略)
八、反思與點評記錄
一元一次方程教案3
【學習目標】
1、使學生能根據商品銷售問題中的數量關系找出等量關系,列出方程,掌握商品盈虧的求法;
2、培養學生分析問題,解決實際問題的能力;
3、讓學生在實際生活問題中,感受到數學的價值。
【學習重點】用列方程的方法解決打折銷售問題。
【學習難點】準確理解打折銷售問題中的'利潤(利潤率)、成本、銷售價之間的關系。
《3.4實際問題與一元一次方程》同步練習含解析
1.班主任老師在七年級(1)班新生分組時發現,若每組7人則多2人,若每組8人則少4人,那么這個班的學生人數是( )人.
A.40 B.44 C.51 D.56
2.某玩具的標價是132元,若降價以9折出售仍可獲利10%,則該玩具的進價是( )元.
A.118 B.108 C.106 D.105
3.某車間有27名工人,生產某種由一個螺栓套兩個螺母的產品,每人每天生產螺母16個或螺栓22個,若分配x名工人生產螺栓,其他工人生產螺母,恰好使每天生產的螺栓和螺母配套,則下面所列方程中正確的是( )
A.22x=16(27-x) B.16x=22(27-x)
C.2×16x=22(27-x) D.2×22x=16(27-x)
4.甲倉庫與乙倉庫共存糧450 噸、現從甲倉庫運出存糧的60%.從乙倉庫運出存糧的40%.結果乙倉庫所余的糧食比甲倉庫所余的糧食多30 噸.若設甲倉庫原來存糧x噸,則有( )
A.(1-60%)x-(1-40%)(450-x)=30 B.60%x-40%?(450-x)=30
C.(1-40%)(450-x)-(1-60%)x=30 D.40%?(450-x)-60%?x=30
《3.4實際問題與一元一次方程》同步四維訓練含答案
1.(2016·黑龍江哈爾濱中考)某車間有26名工人,每人每天可以生產800個螺釘或1 000個螺母,1個螺釘需要配2個螺母,為使每天生產的螺釘和螺母剛好配套.設安排x名工人生產螺釘,則下面所列方程正確的是(C )
A.2×1 000(26-x)=800x
B.1 000(13-x)=800x
C.1 000(26-x)=2×800x
D.1 000(26-x)=800x
2.(2016·廣西南寧中考)超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經兩次降價后售價為90元,則得到方程(A )
A.0.8x-10=90 B.0.08x-10=90
C.90-0.8x=10 D.x-0.8x-10=90
3.(2016·黑龍江綏化中考)一個長方形的周長為30 cm,若這個長方形的長減少1 cm,寬增加2 cm就可成為一個正方形,設長方形的長為x cm,可列方程為(D )
A.x+1=(30-x)-2 B.x+1=(15-x)-2
C.x-1=(30-x)+2 D.x-1=(15-x)+2
一元一次方程教案4
一:教材分析:
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節的重點和難點,同時也是本章節的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數,幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養他們對數學的興趣
以及對他們進行思想教育方面有獨特的意義,同時,對后續教學內容起到奠基作用。
2:教育教學目標:
(1)知識目標:
(A)通過教學使學生了解應用題的一個重要步驟是根據題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。
(B)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數,其余字母表示已知數的情況下,列出一元一次方程解簡單的應用題。
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯系實際的能力。
(3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數方法的優越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數學家對一元一次方程的研究成果,激發學生熱愛中國共產黨,熱愛社會主義,決心為實現社會主義四個現代化而學好數學的思想;同時,通過理論聯系實際的方式,通過知識的應用,培養學生唯物主義的思想觀點。
3:重點,難點以及確定的依據:
根據題意尋找和;差;倍;分問題的相等關系是本課的重點,根據題意列出一元一次方程是本課的難點,其理論依據是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯系實際的問題的理解難度大。
二:學情分析:(說學法)
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數就直接進行列方程或在設未知數時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
(1)抓不準相等關系;
(2)找出相等關系后不會列方程;
(3)習慣于用小學算術解法,得用代數方法分析應用題不適應,不知道要抓怎樣的相等關系。
3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:學生在學習中可能習慣于用算術方法分析已知數與未知數,未知數與已知數之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。
三:教學策略:(說教法)
如何突出重點,突破難點,從而實現教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結合法
2:圖表分析法
3:教學過程中堅持啟發式教學的原則
教學的理論依據是:
1:必須先明確根據應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數,再根據相等關系列出需要的代數式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有X千克面粉”寫成“設原來有X”。另外,在列方程中,各代數式的`單位應該是相同的,如例1中,代數式“X 字串7 ”“—15%X”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數設為未知數,其余的數用已知數或含有已知數與未知數的代數式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。
3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。
4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。
5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區別或最佳列法,以開闊學生的思路。
四:教學程序:
(一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業五個部分。
(二):教學簡要過程:
1:復習提問:
(1):什么叫做等式?
(2):等式與方程之間有哪些關系?
(3):求X的15%的代數式。
(4):敘述代數式與方程的區別。
(理由是:通過復習加深學生對等式,方程,代數式之間關系的理解,有利于學生熟練正確根據題意列出一元一次方程,從而有利降低本節的難度。)
2:導入講授新課:
(1):教具:
一塊小黑板,抄212例1題目及相對應的空表格。
左邊右邊
(2):新課引述:
(3):講述課文212例1:
(目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據題目關系,切勿盲目性)通過理解啟發學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養學生這種發散思維能力。)
指導學生設原來重量為X千克。這里分析等式左邊:原來重量為X千克,運出重量為15%X千克,把以上填入表格左邊。 字串7 分析等式右邊:剩余重量為42500千克,填入表格右邊。
(目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數和列代數式,有利于降低列方程解應用題的難度)
把以上左邊和右邊的代數式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。
同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。
結合解題過程向學生介紹一元一次應用題解法的一般步驟:
課本215黑體字
3:課堂練習:
課文216練習1,2題
(目的是:讓學生通過適當的模仿例題的解題思想方法從而加深對本課的內容的理解掌握。)
4:新課鞏固:
學生對本節內容進行要小結:
列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。
(目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)
5:作業布置:
課文221習題4-4(1)A組1,2,3題
(目的:在于檢驗學生對本節內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)
五:板書設計:
4*4一元一次方程的應用:
例題:小黑板出示例1題目解:設原來有X千克面粉,那么運
相等關系:原來重量—運出重量=剩余重量出了15%X千克,依題意,得
等式左邊:等式右邊:X—15%X=42500
原來重量為X千克,剩余重量為42500千克。解這個方程:
運出重量為15%X千克。85/100*X=42500
解一元一次方程的一般步驟:X=50000(千克)
小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。
一元一次方程教案5
教學目標
1.理解等式的性質,并能應用等式性質解方程進行簡單變形。
2.運用移項,系數化為1,解簡單的一元一次方程。
教學重點 解簡單的一元一次方程。 教學難點 移項的注意事項。 教 具 天平、砝碼。
教學過程
一、設疑自探
1、情境引入:
用天平測量物體的質量時,常常將物體放在天平的左盤內,在右盤內放上砝碼,使天平處于平衡狀態,這時兩邊質量相等就可以測得該物體的質量。 教師按書本上操作要求演示,并將有關的方程變形的'式子板書出來,供同學們觀察。 教師歸納:如果我們在兩邊盤內同時添上(或取下)相同質量的物體,可以發現天平依然平衡,如果我們將兩邊盤內的物體的質量,同時擴大原來相同的數額(或縮小原來的幾分之一),也會看到天平依然平衡。
2、發散提問:
請你根據老師的演示和上面的式子提出一些問題,看誰提的問題好。 (學生可能提出的問題:第一個演示說明了什么、第一個演示有什么啟示、第二個演示……、這些演示有什么啟示、這些方程的變形中有什么一般的規則、你從這些方程的變形中發現了什么?觀察這些方程的變形,你有什么發現?)
本節課我們學習6.2.1方程的簡單變形。板書課題,并出示學習目標。
3、明確自探目標:
同學們提出的這些問題很有價值,我們下面就來探究有關的問題。出示自探提示。 同學們結合“自探提示”和同學們提出的問題,自學課本P5—6頁,完成本節的自探提綱中的問題。
自探提綱 (1)從剛才的演示和方程的變形中,你發現了什么?
(2)等式的性質的內容是什么?例1、例2分別是怎樣應用等式性質解一元一次方程?
(3)移項的定義是什么?移項要注意什么?
(4)運用等式性質來解釋移項、系數化為1的過程。
(5)下列方程變形不屬于移項的是( ) A、由2x=6,得x:3 B、由5x=4x-2,得5x-4x=-2 C、由2y-5=y-3,得2y-y=-3+5 D、由x+a=b,得x=b-a
(6)解下列方程 (1)-5x=8 (2)1-3x=4 (7)若x、y滿足|x-2|+|y+1|=0,則x、y的值為xx。
二、解疑合探
1、同學們逐題解答以上問題,學困生回答,中等生補充,優等生評價,教師做到“三講三不講”。
2、教師注意進行以下兩方面引導:
(1)等式的性質易錯點:性質1,可以加上(減去)同一個整式,性質2不能乘以(或除以)同一個整式(整式包括0)。
(2)同學們對自探提示中第6題進行演板,教師要規范解方程的過程。
三、質疑再探
同學們對本節學習有什么不懂地方或疑問大擔提出。先由同學們回答,同學們回答不完整的內容,教師做補充。 注:本節第一節解方程,若涉及后面的內容,教師應告訴同學們后面將要學習。
四、運用拓展
1、同學們自編練習題,供同學練習,并糾錯。
2、完成以下練習,并糾錯。
(1) (2) (3) (4) (5) (6) (7) (8)
3、已知方程ax+2=2(a-x)的解滿足|x-2|=1,則a: 以上三題,以學生糾錯、評價為主。
4、課堂小結 同學們談談本節的收獲。 通過交流、補充完善,使學生明確;
(1)數學思想:從天平到等式的性質,一般歸納的思想,方程思想。
(2)數學能力:等式性質的應用,即應用移項、系數化1解一元一次方程。
作業設計 必做題 習題P62一、1、2、3、4 選做題 習題P62三、3、4 教后反思:
一元一次方程教案6
教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養學生觀察潛力,提高他們分析問題和解決問題的潛力;
3.使學生初步養成正確思考問題的良好習慣.
教學重點和難點
一元一次方程解簡單的應用題的方法和步驟.
課堂教學過程設計
一、從學生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優越性呢?
為了回答上述這幾個問題,我們來看下面這個例題.
例1某數的3倍減2等于某數與4的和,求某數.
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3.
答:某數為3.
(其次,用代數方法來解,教師引導,學生口述完成)
解法2:設某數為x,則有3x-2=x+4.
解之,得x=3.
答:某數為3.
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并透過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一.
我們明白方程是一個內含未知數的等式,而等式表示了一個相等關系.因此對于任何一個應用題中帶給的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程.
本節課,我們就透過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟.
二、師生共同分析、研究一元一次方程解簡單應用題的'方法和步驟
例2某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原先有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原先重量-運出重量=剩余重量)
3.若設原先面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原先有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42500,
所以x=50000.
答:原先有50000千克面粉.
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)
教師應指出:(1)這兩種相等關系的表達形式與“原先重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,能夠任意選取其中的一個相等關系來列方程;
(2)例2的解方程過程較為簡捷,同學應注意模仿.
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的狀況,教師總結如下:
(1)仔細審題,透徹理解題意.即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;
(2)根據題意找出能夠表示應用題全部含義的一個相等關系.(這是關鍵一步);
(3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案.那里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有好處.
例3(投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤.并嚴格規范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.
其蘋果數為3×5+9=24.
答:第一小組有5名同學,共摘蘋果24個.
學生板演后,引導學生探討此題是否可有其他解法,并列出方程.
(設第一小組共摘了x個蘋果,則依題意,得)
三、課堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉居民1988年末的儲蓄存款到達3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的儲蓄存款。
3.某工廠女工人占全廠總人數的35%,男工比女工多252人,求全廠總人數.
四、師生共同小結
首先,讓學生回答如下問題:
1.本節課學習了哪些資料?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據學生的回答狀況,教師總結如下:
(1)代數方法的基本步驟是:全面掌握題意;恰當選取變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
(2)以上步驟同學應在理解的基礎上記憶.
五、作業
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺.這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元.求得到一等獎與二等獎的人數。
一元一次方程教案7
教學目標:
1、知識與技能:會解含分母的一元一次方程,掌握解一元一次方程的基本步驟和方法,能根據方程的特點靈活地選擇解法。
2、過程與方法:經歷一元一次方程一般解法的探究過程,理解等式基本性質在解方程中的作用,學會通過觀察,結合方程的特點選擇合理的思考方向進行新知識探索。
3、情感、態度與價值觀:通過嘗試從不同角度尋求解決問題的方法,體會解決問題策略的多樣性;在解一元一次放的過程中,體驗“化歸”的思想。
教學重難點:
重點:解一元一次方程的基本步驟和方法。
難點:含有分母的一元一次方程的解題方法。
教學過程:
一、新課導入:
請同學們和老師一起解方程:
并回答:解一元一次方程的一般步驟和最終的目的是什么?
二、講授新課
請給同學們介紹紙草書(P95)。
問題:一個數,它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33.試問這個
數是多少?
并引入讓同學運用設未知數的方法,列出相應的方程。
并回答:這個方程和我們以前學習的方程有什么不同?
同學們和老師一起完成解上述方程,并引入去分母。
例1、
例2、
活動:同學們,解一元一次方程的.步驟有哪些?要注意哪些?
看一看你會不會錯:
(1)解方程:
(2)解方程:
典型例題:解方程:
想一想:去分母時要注意什么問題?
(1)方程兩邊每一項都要乘以各分母的最小公倍數
(2)去分母后如分子中含有兩項,應將該分子添上括號
選一選:
練一練:當m為何值時,整式和的值相等?
議一議:如何解方程:
注意區別:
1、把分母中的小數化為整數是利用分數的基本性質,是對單一的一個分數的分子分母同乘或除以一個不為0的數,而不是對于整個方程的左右兩邊同乘或除以一個不為0的數。
2、而去分母則是根據等式性質2,對方程的左右兩邊同乘或除以一個不為0的數,而不是對于一個單一的分數。
課堂小結:
(1)怎樣去分母?應在方程的左右兩邊都乘以各分母的最小公倍數。
有沒有疑問:不是最小公倍數行不行?
(2)去分母的依據是什么?
等式性質2
(3)去分母的注意點是什么?
1、去分母時等式兩邊各項都要乘以最小公倍數,不可以漏乘。
2、如果分子是含有未知數的代數式,其分子為一個整體應加括號。
(4)解一元一次方程的一般步驟:
布置作業:P98,習題3.3第3題
補充作業:解方程:
(1)
(2)
板書設計:
教學反思:
一元一次方程教案8
一、目的要求
使學生會用移項解方程。
二、內容分析
從本節課開始系統講解一元一次方程的解法。解一元一次方程是一個有目的、有根據、有步驟的變形過程。其目的是將方程最終變為x=a的形式;其根據是等式的性質和移項法則,其一般步驟是去分母、去括號、移項、合并、系數化成1。
x=a的形式有如下特點:
(1)沒有分母;
(2)沒有括號;
(3)未知項在方程的一邊,已知項在方程的另一邊;
(4)沒有同類項;
(5)未知數的系數是1。
在講方程的解法時,要把所給方程與x=a的形式加以比較,針對它們的不同點,采取步驟加以變形。
根據方程的特點,以x=a的形式為目標對原方程進行變形,是解一元一次方程的基本思想。
解方程的.第一節課告訴學生解方程就是根據等式的性質把原方程逐步變形為x=a的形式就可以了。重點在于引進移項這一變形并用它來解方程。
用等式性質1解方程與用移項解方程,效果是一樣的。但移項用起來更方便一些。
如解方程 7x-2=6x-4
時,用移項可直接得到 7x-6x=4+2。
而用等式性質1,一般要用兩次:
(1)兩邊都減去6x; (2)兩邊都加上2。
因為一下子確定兩邊都加上(-6x+2)不太容易。因此要引進移項,用移項來解方程。移項實際上也是用等式的性質,在引進過程當中,要結合教科書第192頁及第193頁的圖強調移項要變號。移項解方程后的檢驗,可以驗證移項解方程的正確性。
三、教學過程
復習提問:
(1)敘述等式的性質。
(2)什么叫做方程的解?什么叫做解方程?
新課講解:
1.利用等式性質1可以解一些方程。例如,方程 x-7=5
的兩邊都加上7,就可以得到 x=5+7,
x=12。
又如方程 7x=6x-4
的兩邊都減去6x,就可以得到 7x-6x=-4,
x=-4。
然后問學生如何用等式性質1解下列方程 3x-2=2x+1。
2.當學生感覺利用等式性質1解方程3x-2=2x+1比較困難時,轉而分析解方程x-7=5,7x=6z-4的過程。解這兩個方程道首先把它們變形成未知項在方程的一邊,已知項在方程的另一邊的形式,要達到這個目的,可以在方程兩邊都加上(或減去)同一個數或整式。這步變形也相當于
也就是說,方程中的任何一項改變符號后可以從方程的一邊移到另一邊。
3.利用移項解方程x-7=5和7x=6x-4,并分別寫出檢驗,要強調移項時變號,檢驗時把數代入變形前的方程。
利用移項解前面提到的方程 3x-2=2x+l
解:移項,得 3x-2x=1+2。①
合并,得 x=3。
檢驗:把x-3分別代入原方程的左邊和右邊,得
左邊=3×3-2=7, 右邊=2×3+1=7, 左邊=右邊,
所以x=3是原方程的解。
在上面解的過程當中,由原方程①的移項是指:
(l)方程左邊的-2,改變符號后,移到方程的右邊;
(2)方程右邊的2x,改變符號后,移到方程的左邊。
在寫方程①時,左邊先寫不移動的項3x(不改變符號),再寫移來的項(改變符號);右邊先寫不移動的項1(不改變符號),再寫移來的項(改變符號),便于檢查。
課堂練習:教科書第73頁 練習
課堂小結:
1.解方程需要把方程中的項從一邊移到另一邊,移項要變號。
2.檢驗要把數分別代入原方程的左邊和右邊。
四、課外作業
習題2。1 P73 復習鞏固
一元一次方程教案9
一、教學分析:
本節課設計簡析:本節課內容是列方程解應用題,主要是小學解應用題和中學解應用題的銜接,讓學生感受數學與現實生活息息相關,并且體驗數學的趣味性,提高學習數學的積極性。
二、教學目標:
(一)知識目標:
1、通過身邊的故事,引導學生對生活中的問題進行探討和研究,學會用方程的思維解決問題。
2、借助找關鍵句或關鍵詞、畫線段圖或示意圖等方法,引導學生正確找出題中的等量關系,列出方程。
(二)能力目標:
1、通過小組合作學習活動,培養學生的合作意識和語言表達能力。
2、培養學生的觀察、分析能力以及用方程思維解決問題的能力。
(三)情感目標:
1、使學生在討論、交流的學習過程中獲得積極的情感體驗,探索意識、創新意識得到有效發展。
2、在分析應用題的過程中,培養學生勇于探索、自主學習的精神。感受到生活中處處存在數學,體驗數學的趣味性
教學重點、難點:
能分析題意,正確找出題中的等量關系,列出方程解決問題。
教學過程:
一、溫故:
分別算出下列繩子的總長度
【設計意圖:為下面的例題做好鋪墊】
二、新課引入:
我今天給大家講一個故事,故事的主人翁是丟番圖,希臘數學家丟番圖(公元3~4世紀)的墓碑上記載著:
“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,兩頰長起了細細的胡須;他結了婚,又度過了一生的七分之一:再過五年,他有了兒子,感到很幸福;可是,兒子只
活了他父親全部生命的一半;兒子死后,他又在極度的悲傷中度過了四年,也與世長辭了。” 根據以上的信息,請你計算出: 丟番圖死時多少歲;
或者根據丟番圖的年齡能被6,12,2,7整除,可知這個年齡是6,12,2,7的倍數,所以他的年齡為84,168??但是根據迄今被《吉尼斯世界記錄》認可的世界上壽命最長的人是法國的讓-卡爾門特,他在1997年8月4日去世時享年122歲。所以丟番圖的年齡為84歲。
【設計意圖:這個題目有一定的難度和趣味性,可以在開課時吸引全班學生的注意力,同時這個題目可以用方程解法和算式解法,甚至還可以用以前學過的倍數來解決,解題方法多樣性,可以鍛煉學生的思維,也可以做到小學用算式和中學列方程解應用題的銜接。通過這個題目對比兩種解法可以看出:算術解法是把未知量置于特殊地位,設法用已知量組成的混合運算式表示出來(在條件較復雜時,列出這樣的式子往往比較困難);代數解法是把未知量與已知量同等對待(使未知量在分析問題的過程中也能發揮作用),找出各量之間的等量關系,建立方程.】
總結:列方程解應用題的一般步驟:
(1)“審”:審清題意; (2)“設”:設未知數并把有關的量用含有未知數的代數式表示;
(3)“列”:根據等量關系列出方程; (4)“解”:解方程; (5)“答”:檢驗作答。
三、鞏固練習,提高能力
1、一只天鵝在天空中飛翔時遇到了一群天鵝,它向群鵝問好:“你們好啊,100只天鵝。”群鵝回答說:“我們不是100只,但是如果以我們這么多,再加上這么多,在加上我們的一半,再加上我們一半的一半,你也加進來,那么我們就是100只了,”問天上飛的群鵝有多少只?
解:設群鵝有x只。 【設計意圖:這個題目和例題思路差不多,可以檢驗學生是否聽懂例題,語言生活化,可以引起學生的興趣。此題可以利用畫線段來分析題意,列出方程。】
1、現在兒子的年齡是8歲,父親的年齡是兒子年齡的4倍,請問多少年后父親的年齡是兒子年齡的3倍。
解:設x年后父親的年齡是兒子年齡的3倍
兒子 爸爸
現在的年齡 8 8×4
X年后的年齡 8+X 8×4+X 然后根據題意列出方程解答。
【設計意圖:這個題目用算式解題較容易出錯,但是用方程解很簡單,讓學生體驗用方程成功解應用題的成就感】
3、我的地盤,我做主!
編題目:根據方程X+(X+8)= 40,編一道應用題。
【設計理念:學生具備了讀懂題目,列出方程的能力,那么能不能根據一個方程自己編一道應用題呢?這是能力的'提升!學生編完題后互相檢驗,又再一次鍛煉了學生分析題意的能力】
四、小結:
今天你有什么收獲?體驗到方程有時候給我們解應用題帶來很大的方便。
思考題:1、有一群鴿子和一些鴿籠,如果每個鴿籠住6只鴿子,則剩余3只鴿子無鴿籠可住,如果再飛來5只鴿子,每個鴿籠剛好住8只鴿子,原有多少個鴿籠?多少只鴿子?
【設計理念:經典問題如何用方程解決】
2、有甲、乙兩個牧童,甲對乙說:“把你的羊給我一只,我的羊數就是你的羊數的2倍。”乙回答說:“最好還是把你的羊給我一只,我們的羊數就相等了,”兩個牧童各有多少羊?
【設計意圖:這個題目看起來比較簡單,學生很容易說出答案4、6或者1,3等,但是經過列式計算發現是錯的,這個題目可能有一些學生會用二元的方程解題,對用這種方法的同學提出表揚】
【設計理念:練習的設計體現了層次性和趣味性。同時也適合不同程度的學生,讓學生在不同層次、不同類型的題目中得到鍛煉,提高解題能力。同時讓學生感受用方程的方法解決問題的樂趣,拓展學生的思維。】
一元一次方程教案10
教學目的:
掌握解決涉及一元一次方程的實際應用題的基本方法與步驟,并能夠熟練地建立一元一次方程以解決這類問題。理解并靈活運用解決一元一次方程實際應用題的核心策略與操作流程;并且具備根據問題情境構建一元一次方程,進而求解的能力。
重點、難點
1、重點:弄清應用題題意列出方程。
2、難點:弄清應用題題意列出方程。
教學過程
一、復習
1、什么叫一元一次方程?
2、解一元一次方程的理論根據是什么?
二、新授。
例1、假設參照教材第10頁的描述,現在有一個天平,其兩邊放置了不同重量的食鹽。具體來說,一邊有51克的食鹽,另一邊則有45克的食鹽。我們的目標是通過調整兩邊的食鹽量,使得天平達到平衡狀態,即兩邊的食鹽重量相等。要解決這個問題,首先需要明確天平平衡時兩邊的食鹽重量應當相等。目前,一邊有51克的食鹽,另一邊有45克的食鹽。為了使兩邊重量相等,我們需要計算出從重的一邊(即51克)取出多少食鹽放到輕的一邊(即45克),使得兩邊的總重量相同。設從51克食鹽的盤(我們稱之為盤A)中取出x克的食鹽,并將其放入到45克食鹽的盤(我們稱之為盤B)中。根據題目的`要求,平衡時兩邊的重量應當相等,因此可以建立以下方程:[51 - x = 45 + x]解這個方程以找到x的值:[51 - 45 = x + x][6 = 2x][x = 3]因此,為了使天平兩邊的食鹽重量相等,應當從盤A內拿出3克的食鹽放到盤B內。
先讓學生思考,引導學生結合填表,體會解決實際問題,重在學會探索:已知量和未知量的關系,主要的等量關系,建立方程,轉化為數學問題。
分析:設應從A盤內拿出鹽x,可列表幫助分析。
等量關系;A盤現有鹽=B盤現有鹽
完成后,可讓學生反思,檢驗所求出的解是否合理。
(盤A現有鹽為5l-3=48,盤B現有鹽為45+3=48。)
培養學生自覺反思求解過程和自覺檢驗方程的解是否正確的良好習慣。
例2.學校團組織動員63名學生參與為校園內建設花壇搬運磚塊的活動,其中初中生每人負責搬運6塊磚,而其他年級的學生每人則需搬運8塊磚。最終統計得知,全體參與者共搬運了400塊磚。請問參與搬運磚塊的初中生人數是多少?基于上述內容進行適當的調整和重組,保持與原句相似的意思,同時確保答案的正確性和邏輯性。
引導學生弄清題意,疏理已知量和未知量:
1、題目中有哪些已知量?
(1)參加搬磚的初一同學和其他年級同學共65名。
(2)初一同學每人搬6塊,其他年級同學每人搬8塊。
(3)初一和其他年級同學一共搬了400塊。
2、求什么?
初一同學有多少人參加搬磚?
3、等量關系是什么?
初一同學搬磚的塊數十其他年級同學的搬磚數=400
假設在組織搬運磚塊的任務時,我們得知了某一年級的學生人數是x。根據這個信息(已知量1),我們可以推斷出參與搬運磚塊的其他年級學生人數為總數65減去這一年級的學生數,即(65-x)。接著,如果我們掌握了另一個具體的已知條件(已知量2),并且通過這個條件以及搬運任務的等效性原則,我們可以建立一個方程式來解決這個問題。這里的“等效性原則”意味著,不同年級學生搬運磚塊的總工作量保持一致。利用上述信息以及等效性原則,我們能夠構建出一個描述參與搬運磚塊學生的數量與工作總量之間關系的數學方程式。
6x+8(65-x)=400
也可以按照教科書上的列表法分析
三、鞏固練習
教科書第12頁練習1、2、3
第l題:可引導學生畫線圖分析
等量關系是:AC十CB=400
若設小剛在沖刺階段花了x秒,即t1=x秒,則t2(65-x)秒,再
由等量關系就可列出方程:
6(65-x)+8x=400
四、小結
在本堂課程中,我們深入探討了如何運用一元一次方程解決現實生活中的問題。解決這類問題的核心步驟在于準確識別并捕捉能夠反映問題本質的等量關系。在構建這一等量關系時,我們需要明確區分已知量與未知量。已知量即題目中給出的具體數值,而未知量則是需要通過方程求解的問題核心。為了便于處理,我們通常選擇一個合適的變量來代表未知數,并利用題目中提供的信息,將其他未知量以該變量的代數表達式來表示。完成上述步驟后,依據等量關系,我們便能建立出所需的方程式。接下來,解這個方程以找出未知數的確切值,并且進行合理性驗證。最終,將求解結果回歸到實際情境中,撰寫出符合題意的答案。
五、作業
一元一次方程教案11
【教學目標】
1.進一步經歷運用方程解決實際問題的過程,初步體會方程是刻畫現實世界的有效數學模型;
2.學會合并(同類項)及移項,會解"ax+bx=c"及"ax+b=cx+d"類型的一元一次方程;
3.初步體會一元一次方程的應用價值,感受數學文化;
4.理解解方程的目標,體會解法中蘊涵的化歸思想.
探索1
等式一邊的項可以移到等式的另一邊嗎?
例如:3+5=8這是一個等式.把左邊的一項"3"移到右邊,得到什么式子?這時等式成立嗎?
如果把"3"變號后移到的另一邊呢?
換一個等式-6-7=-13試一試.
任寫一個等式再試一試.
探索2
(1)方程x+3=-1的解是多少?
(1)把方程x+3=-1中左邊的常數項”3”移到右邊,就得到方程x=-1+3.所得的方程的解與原方程的解一樣嗎?
探索3
怎樣求方程x-7=5的解?
有的學生可能還是樂意用算術解法,教師要有足夠的耐心.
甲的解法是:這是一個表示減法運算的式子,x是被減數,7是減數,5是差.所以有x=5+7(理由是_______________________),于是x=12.
乙的解法是:這是一個等式,根據等式的性質1,等式兩邊________,結果仍相等,把方程的兩邊都加7,得x-7+7=5+7,于是x=12.
丙的解法是:把方程左邊的項-7,變號(即變成+7)后移到方程的右邊,得x=5+7,于是x=12.
議一議,三種解法,你樂意用哪一種?
歸納
解方程時,把方程一邊的某項變號后移到另一邊,這種變形叫移項.
注意:移項的要點不在移動,而在于變號.
想一想:移項為什么要變號?移項的根據是什么?
探索4
以下各方程的“移項”對不對?為什么?
(1)x+5=7,移項得x=7+5;
(2)3-x=7,移項得-x=7-3;
(3)2x=7x,移項得2x+7x=0;
(4)2x=7x-6,移項得2x-7x=-6.
探索5
移項的目的是把方程化為ax=b的形式,以下的“移項”都達不到預期的目的你認為應該怎樣做才對?
(1)3x+6=0,移項得0=-3x-6;
(2)3x=5x-7,移項得3x+7=5x;
(3)3-x=5x,移項得3-x-5x=0;
(4)3x+20=7x-18,移項得-7x+18=-3x-20.
例題學習
P81.例1
練習
P81.練習
作業
P84.習題2,3,9
補充作業
1.一個兩位數,個位上的數是十位上的數的2倍,如果把十位上的.數與個位上的數對調,那么所得到的兩位數比原兩位數大36.求原兩位數.
解:設原兩位數十位上的數為x,
那么,根據個位上的數是十位上的數的2倍,得個位上的數是________,
則原兩位數記為___________.
因為對調后所得到的新兩位數的十位上的數為______,個位上的數為______,新兩位數應記為___________________.
根據新兩位數比原兩位數大36,列方程:_____________________.
解這個方程得__________.答:______________________________.
2.小調查今年6月份你家的固定電話的收費是多少?找出發票,看看費用當中具體分為哪幾項?
一元一次方程教案12
教學目標
1.使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;
2.培養學生觀察能力,提高他們分析問題和解決問題的能力;
3.使學生初步養成正確思考問題的良好習慣.
教學重點和難點
一元一次方程解簡單的應用題的方法和步驟.
課堂教學過程設計
一、從學生原有的認知結構提出問題
在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優越性呢?
為了回答上述這幾個問題,我們來看下面這個例題.
例1某數的3倍減2等于某數與4的和,求某數.
(首先,用算術方法解,由學生回答,教師板書)
解法1:(4+2)÷(3-1)=3.
答:某數為3.
(其次,用代數方法來解,教師引導,學生口述完成)
解法2:設某數為x,則有3x-2=x+4.
解之,得x=3.
答:某數為3.
縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數,列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一.
我們知道方程是一個含有未知數的等式,而等式表示了一個相等關系.因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程.
本節課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟.
二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟
例2某面粉倉庫存放的面粉運出15%后,還剩余42500千克,這個倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
3.若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?
上述分析過程可列表如下:
解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
x-15%x=42500,
所以x=50000.
答:原來有50000千克面粉.
此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?
(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
教師應指出:(1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質是一樣的,可以任意選擇其中的`一個相等關系來列方程;
(2)例2的解方程過程較為簡捷,同學應注意模仿.
依據例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據學生總結的情況,教師總結如下:
(1)仔細審題,透徹理解題意.即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數;
(2)根據題意找出能夠表示應用題全部含義的一個相等關系.(這是關鍵一步);
(3)根據相等關系,正確列出方程.即所列的方程應滿足兩邊的量要相等;方程兩邊的代數式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;
(4)求出所列方程的解;
(5)檢驗后明確地、完整地寫出答案.這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義.
例3(投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?
(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥.解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現的各種錯誤.并嚴格規范書寫格式)
解:設第一小組有x個學生,依題意,得
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.
其蘋果數為3×5+9=24.
答:第一小組有5名同學,共摘蘋果24個.
學生板演后,引導學生探討此題是否可有其他解法,并列出方程.
(設第一小組共摘了x個蘋果,則依題意,得)
三、課堂練習
1.買4本練習本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習本每本多少元?
2.我國城鄉居民1988年末的儲蓄存款達到3802億元,比1978年末的儲蓄存款的18倍還多4億元.求1978年末的儲蓄存款.
3.某工廠女工人占全廠總人數的35%,男工比女工多252人,求全廠總人數.
四、師生共同小結
首先,讓學生回答如下問題:
1.本節課學習了哪些內容?
2.列一元一次方程解應用題的方法和步驟是什么?
3.在運用上述方法和步驟時應注意什么?
依據學生的回答情況,教師總結如下:
(1)代數方法的基本步驟是:全面掌握題意;恰當選擇變數;找出相等關系;布列方程求解;檢驗書寫答案.其中第三步是關鍵;
(2)以上步驟同學應在理解的基礎上記憶.
五、作業
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
3.某廠去年10月份生產電視機20xx臺,這比前年10月產量的2倍還多150臺.這家工廠前年10月生產電視機多少臺?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個小箱子里裝有洗衣粉多少千克?
5.把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元.求得到一等獎與二等獎的人數
一元一次方程教案13
學習目標
1. 了解一元一次方程及其相關概念
2. 掌握等式的性質,理解掌握移項法則
3. 會用等式的性質解一元一 次昂成(數字系數),掌握解一元一次方程的基本方法
4. 能夠以一元一次方程為工具解決一些簡單的實際問題,包括列方程、求解方 程和解釋結果的實際意義及合理性,提高分析問題、解決問題的.能力
5. 初步學會用方程的思想思考問 題和解決問題的一些基本方法,學會用數學的方法觀察、分析、歸納和總結 現實情境中的實際問題。
重點
難點 重點:解方程、用方程解決 實際問題
難點:用方程解決 實際問題
教學流程
師生活動 時間 復備標注
一、結合課本112頁知識結構圖和回顧與思 考中的問題,復習本章的知識點,形成框架,鞏固重點知識
二、典 例回顧
1.一元一次方程的概念:
例1.試判斷下列方程是否為一元一次方程.
(1).x=5 (2). x2+3x=2 (3) .2x+3y=5
2.一元一次方程的解(根 ):
判斷下列x值是否為方程 3x-5=6x+4 的解.
(1).x =3 (2)x=3
3.解一 元一次方程的基本 思路 :
4.解決問題的基本步驟
例5:整理一批 圖書,由一個人做要40小 時。現在計劃由一部分人先做4小 時,再增加2人和他們一起做8小時,完成這項工作。假設這些人 的工作效率下共同, 具體 應先安排多少人工作?
解:設先安排x人工作4小時。根據兩段 工作量之和應是總工作量,由此,列方程:
去分母,得 4x+8(x+2) =40
去括號,得 4x+8x+16=40
移項及合并,得12x=24
系數化為1, 得x=2
答:應先安排2名工人工作4小 時.
注意:工作量=人均效率人數時間
本題的關鍵是 要人均效率與人數和時 間之間的數量關系.
三、基礎訓練:課本第113頁第1.2.3題.
四 、綜合訓練:課本113頁至114頁4.5.6.7.8
五、達標訓練:3.7
五、課堂小結: 收獲了哪些?還有哪些需要再學習?
學生作業
課件出示 問題明確 知識要點
學生練習基礎上,教師點撥
一元一次方程教案14
1、通過復習等式、不等式以及使用字母表達的公式,我們能夠進一步強化并深化學生對方程的概念理解和掌握。
2、會用方程表示簡單的等量關系,會列方程解決簡單問題。
3、感受式與方程在解決問題中的價值,培養初步的代數思想。
明確字母表示數的意義和作用;會靈活的用方程解答兩步簡單的實際問題。
找等量關系式,用方程解決實際問題。
一、導入
我們都記得這首兒歌
一只青蛙一張嘴,兩只眼睛四條腿;
兩只青蛙兩張嘴,四只眼睛八條腿;
請你來接下句
三只青蛙_________;
五只青蛙呢?
n只青蛙呢?
一首精巧的童謠巧妙地融合了數學的智慧與樂趣,細心的學生們早已察覺到,這首童謠不僅蘊含了數字的奧秘,還巧妙地采用了字母來象征數值,賦予抽象的概念以具象的形象。今天,我們的課程將圍繞“用字母表示的數”這一主題進行深入探討。請將上述內容修改為意思相近的原創表述,保持原文的核心信息不變,僅作形式上的調整,不涉及擴展或問答環節。若原句中包含引用或中文固定表達,則在回復時予以保留。直接給出修改后的內容,使用中文回復。一首充滿數學智慧與趣味的童謠,已讓細心的學生們洞察其中的玄機——它不僅包含了數字元素,還巧妙地運用字母來代表數值,將抽象的數學概念以直觀的形式呈現出來。為此,今天的課堂將聚焦于“利用字母表示數值”的主題進行深入解析。
二、進行復習
1、用字母表示數
(1)同學們想一想,在數學中有哪些地方常用字母來表示?
生列舉:數量關系(路程、速度、時間即s=vt)
計算公式(長方形面積計算公式:s=ab圓柱的體積公式:v=sh等)
運算定律(加法結合律:a+b+c=a+(b+c)等)
(2)請同桌之間相互舉兩個這樣的例子。
(3)你們知道為什么用字母表示數嗎?
(4)讓我們開始動手實踐:請同學們打開課本至第71頁,抓緊時間進行練習。大家獨立完成課本中的題目(1)到(題)。我將會在四周巡視,確保每位同學都能順利進行。完成之后,我們進行全班的答案分享,特別討論每個題目的含義與解答思路。
(5)假設一臺插秧機在一天的工作過程中,上午勞動了5個小時,下午則持續作業了3個小時。最終,這臺機器在這一天總共完成了160平方米的插秧任務。請問,我們如何計算出每小時的平均插秧面積呢?
算法有兩種:其一:算術方法:160÷(5+3)=20
依據:總插秧數量÷時間=單位時間量
其二:列方程:x(5+3)=160
依據:單位時間量×時間=總插秧數量
觀察比較:以上兩種解法有哪些相同點和不同點?
相同點:都是根據數量間的相等關系列式。
不同點:解法一:以已知推出未知,是算術法。
解法二:把未知數用x表示,列出含有未知數的等式,即方程。
同學們想一想,等式和方程有什么聯系和區別?
方程有哪些性質呢?(等式、含有未知數)
2、方程
(1)判斷下列哪些是方程(說明理由)
7+8=3×5 4a+5b a+12=89
4x=y 3+100>25+y 6+x=0.5×3
(2)你會解方程嗎?從中選擇一個試一試。
(3)如何判斷方程的解是否正確?
(4)列方程解應用題的解題步驟是怎樣的?
討論后得出:①弄清題意,找出未知數,并用x表示;
②找出應用題中數量之間的'相等關系,列方程;
③解方程;
④檢驗,寫出答案。
3、列方程解決問題
(1)在日常生活中,我們時常會遇到各種需要通過數學計算來解決的實際問題。比如,要了解一副乒乓球拍的價格,我們可以通過建立并解方程的方法快速得到答案。讓我們一同來探索這一過程。請將上面這段內容替換為意思相近但原創的表述:在我們的日常生活中,經常會有種種情境需要我們運用數學知識來尋求解答。以探尋一副乒乓球拍的售價為例,我們可以借助設立和求解方程式的方式,迅速找到答案。接下來,讓我們共同進行這場數學之旅。
在書店里,李老師計劃購買一組球拍。他付給收銀員100元,之后從收銀臺收到了2元的零錢作為找零。那么,這組乒乓球拍的價格是多少呢?
引導生認真審題,找出等量關系,自己列出方程并求解。交流解題思路。
(2)生嘗試自主解決例二:相遇問題。師巡視,請生到黑板完成,全班交流。
(3)練習
①練一練1
②師展示習題:說出下面每組數量之間的相等關系。
(1)女生人數,男生人數,全班人數;
(2)蘋果的重量,梨的重量,梨比蘋果少的重量。
(3)一輛公交車在中途站點停靠,乘客中有15位選擇下車,隨后又有9位乘客上車。此刻,車上的乘客總數恰好為30人。那么,在到達這個站點之前,車上有多少位乘客呢?
(4)一本書240頁,小剛看了5天,還剩165頁沒看,平均每天看多少頁?
③課本練一練5
三、小結
說一說你今天的收獲在哪里?
一元一次方程教案15
教學目標
知識與能力:
1、通過對典型實際問題的分析,體驗從算術方法到代數方法是一種進步、
2、在根據問題尋找相等關系、根據相等關系列出方程的過程中,培養獲取信息、分析問題、處理問題的能力、
3、在方程的概念“含有未知數的等式”指引下經歷把實際問題抽象為數學方程的`過程,認識到方程是刻畫現實世界的一種有效的數學模型,初步體會建立數學模型的思想、
教學目標
過程與方法:
1、能結合實際問題情境發現并提出數學問題、
2、深入研習后,我們能更深刻理解方程作為描繪現實世界有力數學工具的本質,從而顯著提升根據實際情境構建數學模型的能力。
情感態度與價值觀目標:
1、勤于思考,樂于探究,敢于發表自己的觀點;
2、以積極的態度與同伴合作,從解決實際問題中體驗數學價值、
教學重難點
重點
會用一元一次方程解決實際問題、
難點
將實際問題轉化為數學問題,通過列方程解決問題、
【一元一次方程教案】相關文章:
實際問題與一元一次方程教案12-15
初中數學 第一冊一元一次方程 利用等式的性質解方程 教案12-18
可化為一元一次方程的分式方程03-07
高中教案教案03-05
關于教案模板 教案模板教案07-17
環保教案范文 小班教案環保教案09-15
實用的教案 完整的教案12-26
小班教案《小熊》教案10-18