<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
            教案

            《方程》教案

            時間:2025-05-10 07:56:08 我要投稿

            【熱門】《方程》教案4篇

              作為一名教學工作者,就有可能用到教案,教案是備課向課堂教學轉化的關節點。優秀的教案都具備一些什么特點呢?下面是小編精心整理的《方程》教案4篇,僅供參考,歡迎大家閱讀。

            【熱門】《方程》教案4篇

            《方程》教案 篇1

              課前準備

              教師準備 多媒體課件

              教學過程

              ⊙談話揭題

              1.談話導入。

              我們學過了關于方程的哪些知識?(結合學生的回答板書)

              預設

              生1:方程的意義。

              生2:方程與等式的關系。

              生3:解方程的方法。

              生4:用方程知識解決實際問題。

              ……

              2.揭示課題。

              同學們說得很全面,這節課我們就來系統地復習有關方程的知識。(板書課題:方程)

              ⊙回顧與整理

              1.方程。

              (1)什么是方程?它與算術式有什么不同?

              明確:

              ①含有未知數的等式叫作方程。

              ②算術式是一個式子,由運算符號和已知數組成。方程是一個等式,在方程里的未知數可以參與運算,并且只有當未知數為特定的數值時,方程才成立。

              (2)什么是方程的解?

              使方程左右兩邊相等的未知數的.值,叫作方程的解。

              (3)什么是解方程?

              求方程的解的過程叫作解方程。

              (4)解方程的依據是什么?

              ①等式的性質。

              ②加減法和乘除法各部分之間的互逆關系。

              (5)課件出示教材80頁“回顧與交流”3題。

              ①組織學生分組討論解方程的步驟和方法,以及哪些地方需要注意。

              ②指名到黑板前進行板演。

              ③全班交流并說一說自己是怎么解的。

              2.列方程解決實際問題。

              (1)列方程解應用題的步驟。

              學生小組交流并集體匯報,然后教師明確:

              ①弄清題意,確定未知數并用x表示;

              ②找出題中數量間的相等關系;

              ③列方程,解方程;

              ④檢驗并寫出答語。

              (2)列方程解應用題的關鍵及找等量關系的方法。

              ①列方程解應用題的關鍵是什么?

              列方程解應用題的關鍵是找出題中的等量關系,根據等量關系列方程解答。

              ②你知道哪些找等量關系的方法?

              預設

              生1:根據關鍵性詞語找等量關系。

              生2:根據常見的四則混合運算的意義及各部分之間的關系找等量關系。

              生3:根據常見的數量關系找等量關系。

              生4:根據計算公式找等量關系。

              (3)課件出示教材80頁“回顧與交流”4題。

              教師引導學生先找出各題的等量關系,再列方程自主解決問題。

            《方程》教案 篇2

              本單元教學方程的知識,是在四年級(下冊)“用字母表示數”的基礎上編排的。第一次教學方程,涉和的基礎知識比較多,教學內容分成三局部編排。

              第1~2頁教學等式的含義與方程的意義,根據直觀情境里的等量關系列方程。

              第3~11頁教學等式的性質,解方程,列方程解答一步計算的實際問題。

              第12~14頁全單元內容的整理與練習。

              本單元編排的一篇“你知道嗎”簡要介紹了我國古代就有方程的思想,并有運用方程解決實際問題的歷史記載。

              1?從等式到方程,逐步構建新的數學知識。

              方程是等式里的一類特殊對象,教材用屬概念加種差的方式,按“等式+含有未知數→方程”的線索教學方程的意義。

              (1)

              借助天平體會等式的含義。

              等式是方程的生長點,同學在前幾冊教材里對等式已經有了初步的認識,為了有利于方程概念的建立,本單元教材首先讓同學體會等式的含義。

              天平兩臂平衡,表示兩邊的物體質量相等;兩臂不平衡,表示兩邊物體的質量不相等。讓同學在天平平衡的直觀情境中體會等式,符合同學的認知特點。例1在天平圖下方出現“=”,讓同學用等式表達天平兩邊物體質量的相等關系,從中體會等式的含義。教材使用了“質量”這個詞,是因為天平與其他的秤不同。習慣上秤計量物體有多重,天平計量物體的質量是多少。教學時不要把質量說成重量,但不必作過多的解釋。

              例2繼續教學等式,教材的布置有三個特點:

              第一,有些天平的兩臂平衡,有些天平兩臂不平衡。根據各個天平的狀態,有時寫出的是等式,有時寫出的不是等式。同學在相等與不等的比較與感受中,能進一步體會等式的含義。第二,寫出的四個式子里都含有未知數,有兩個是含有未知數的等式。這便于同學初步感知方程,為教學方程的意義積累了具體的素材。第三,寫四個式子時,對同學的要求由扶到放。圓圈里的關系符號都要同學填寫,同學在選擇“=”“>”或“<”時,能深刻體會符號兩邊相等與不相等的關系;符號兩邊的式子與數則逐漸放手讓同學填寫,這是因為他們以前沒有寫過含有未知數的等式與不等式。

              (2)

              教學方程的意義,突出概念的內涵與外延。

              “含有未知數”與“等式”是方程意義的兩點最重要的內涵。“含有未知數”也是方程區別于其他等式的關鍵特征。在第1頁的兩道例題里,同學陸續寫出了等式,也寫出了不等式;寫出了不含未知數的等式,也寫出了含有未知數的等式。這些都為教學方程的意義提供了鮮明的感知資料。教材首先告訴同學:

              像x+50=150、2x=200這樣含有未知數的等式叫做方程,讓他們理解x+50=150、2x=200的一起特點是“含有未知數”,也是“等式”。這時,假如讓同學對兩道例題里寫出的50+50=100、x+50>100和x+50<200不能稱為方程的原因作出合理的解釋,那么同學對方程是等式的理解會更深刻。教材接著布置討論“等式和方程有什么關系”,并通過“練一練”第1題讓同學先找出等式,再找出方程,理解等式與方程這兩個概念之間的包括與被包括關系。即方程都是等式,但等式不都是方程。這道題里有以x為未知數的'等式,也有以y為未知數的等式,使同學對“未知數”有正確的理解,防止把未知數局限為x,把方程狹隘地理解為“含有x的等式”。“練一練”第2題要求同學自身寫出一些方程并相互交流,讓它們在寫方程時關注方程的實質屬性,從而鞏固方程的概念。

              (3)

              用方程表示直觀情境里的相等關系。

              第2頁的“試一試”和“練一練”第3題都是看圖列方程,編排這些題的目的是培養同學發現和理解實際情境里的等量關系的能力,體會方程是表示等量關系的數學方法,從而進一步鞏固方程的概念,并為以后列方程解決實際問題打下扎實的基礎。這些內容在編排上有兩個特點:

              一是直觀情境的出現從天平圖開始,發展到帶括線的圖畫。帶括線的圖畫在一年級(上冊)就出現了,同學比較熟悉。但是,從列算式求答案的習慣思維轉向列方程表示等量關系,仍然會有困難。因此,教材先讓同學看天平圖列方程。天平兩臂平衡,表示它左右兩邊物體的質量相等,已經在兩道例題里教學得很充沛了,看天平圖列方程能讓同學初步知道什么是列方程和怎樣列方程,對依據什么列方程和列出的方程表示什么有所體驗。

              在此基礎上,過渡到列方程表示帶括線的圖畫里的等量關系,會平穩得多。二是帶括線的圖畫里的等量關系,突出兩個或幾個局部數相加是它們的總數。在幾個局部數相同時,它們相加用乘法比較簡便。這些關系是數量之間最基本的關系。而且這些關系建立在加法和乘法的意義上,同學容易理解。如文具盒的價錢加筆記本的價錢一共20元,買4本同樣的故事書一共要16.8元,列出的方程分別是12+x=20和4x=16.8。假如少數同學列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;絕不能列出20-12=x、16.8÷4=x這樣的方程。因為后者仍然是過去列算式的思路,不利于同學體會數量間的相等關系,對以后的教學也是有弊無利的。

              2?利用等式的性質解方程。

              在過去的小學數學教材里,同學是應用四則計算的各局部關系解方程。這樣的思路只適宜解比較簡單的方程,而且和中學教材不一致。《規范》從同學的久遠發展和中小學教學的銜接動身,要求小學階段的同學也要利用等式的性質解方程。因此,本單元布置了關于等式性質的內容,分兩段教學:

              第一段是等式的兩邊同時加上或減去同一個數,結果仍然是等式;第二段是等式的兩邊同時乘或除以同一個不等于零的數,結果仍然是等式。在每一段教學等式的性質以后,都和時讓同學運用等式的性質解方程。

              (1)

              在直觀情境中,按“形象感受→籠統概括”的方式教學等式的性質。

              教材仍然用天平的直觀情境教學等式的性質。因為在兩臂平衡的天平上,左右兩邊物體的質量發生相同的變化,天平的兩臂仍然堅持平衡。這種現象能形象地表示等式的性質,有利于同學的直觀感受。

              例3教學等式的一個性質。教材設計了四組天平圖,每組左邊的天平圖表示變化前的等式,右邊的天平圖表示變化后的等式,從左邊的等式到右邊的等式,反映了等式的性質。上面的兩組圖揭示的是等式的兩邊都加上一個相同的數,仍然是等式;下面的兩組圖揭示的是等式的兩邊都減去相同的數,仍然是等式。四組圖的內容綜合起來就是等式的一個性質。教材精心設計每組天平上物體的質量,第一組圖寫出的是不含未知數的等式,在左邊的天平表示20=20以后,右邊天平的兩邊各加1個10克的砝碼,看圖填寫20+()○20+()。同學在兩個括號里都寫“10”,在圓圈里寫“=”,聯系天平兩邊各加10克都變成30克,而天平仍然平衡的現象,體會填寫的等式是合理的。這樣就首次感知了等式的兩邊都加上同一個數,結果仍是等式。第二組圖寫出的是含有未知數的等式,從x=50到x+20=50+20的變化和比較中,對等式兩邊都加上相同的數有進一步的感受。第三組圖寫出的等式兩邊都用字母a表示砝碼的質量,圈出a克砝碼并畫上箭頭,表示去掉它的意思。聯系已有經驗,這里的a代表許多個數,這組天平圖與等式概括了眾多等式兩邊減去相同數的情況。第四組圖在方程x+20=70的兩邊都減去20,不但又一次表示了等式性質,而且與解方程的方法十分接近。

              另外,這道例題的8個等式中,有7個讓同學在圓圈里填寫“=”組成等式,這是引導同學切實關注等式有沒有變化。右邊的四個等式分別讓同學在括號里填出同時加上或減去的數,有利于發現等式的性質。

              例5教學等式的另一個性質。教材注意利用同學前面學習等式性質的經驗,在感知天平的直觀情境表示出等式性質的一個實例后,再讓同學寫一個等式,通過比較、概括與交流,得出“等式的兩邊都乘或除以相同的數,結果仍然是等式”的結論。教學時有兩點應注意:

              一是讓同學正確理解圖意。上面一組天平圖的左邊原來是一個質量為x克的物體,又添上一個質量相同的物體;右邊原來是一個20克的砝碼,又添上一個同樣的砝碼。這表示天平左右兩邊物體的質量都乘2。下面一組天平圖左邊原來是3個質量都為x克的物體,現在只剩下1個這樣的物體;右邊原來是3個20克的砝碼,現在只剩下1個20克的砝碼。這表示天平左右兩邊物體的質量都除以3。二是等式兩邊同時除以的那個數不能是0,這一點同學能夠接受。因為前面的教學中,已經多次提到除數不能是0。

              (2)

              應用等式的性質解方程。

              例4和例6教學解方程,解方程的關鍵是方程的兩邊都加(減)幾、乘(除以)幾,教材對此有精心的設計。例4看圖列出方程,同學先從圖中能得到求x值的啟示:

              只要在天平的左右兩邊各去掉10克的砝碼。聯系等式的性質與方程x+10=50的特點,理解“方程兩邊都減去10”的道理:

              等式的兩邊都減去10,左邊就剩下x,x的值只要通過右邊的計算就能得到。例6在列出方程以后,讓同學聯系已有的解方程經驗和有關的等式性質,考慮“方程兩邊都要除以幾”這個問題,并解這個方程。這些設計都體現了從同學實際動身,讓同學主動學習的教育理念。另外,例4的編寫還注意了三點:

              一是示范了解方程的書寫格式,強調等式變換時,各個等式的等號要上下對齊,教學時必需嚴格遵循;二是求得x=40后,通過“是不是正確答案”的質疑,引導同學根據“左右兩邊是不是相等”進行檢驗;三是在回顧反思求x值的過程基礎上,講了什么是“解方程”。這些都是以后解方程時反復使用的知識。

              協助同學逐漸掌握解方程的方法并形成相應的技能,是教材編寫時認真考慮的問題。用好教材設計的兩道題,能培養同學這方面的能力。一處是第4頁“練一練”第1題,為了使方程的左邊只剩下x,方程的左邊已經加上25(或減去18),右邊應該怎樣?這是剛開始教學解方程時的設計。通過在方框里填數,在圓圈里填運算符號,

              引導同學正確應用等式的性質,體會解方程的戰略和思路,理出解方程的關鍵步驟。同學在方框里填數一般不會有問題,在圓圈里填運算符號可能會出現錯誤。要通過交流和評價,協助他們正確掌握方程的兩邊同時加上或同時減去相同的數。另一處是第6頁第7題,簡化解方程過程的書寫,濃縮思路,是在基本掌握解方程的方法以后布置的。如解方程x-20=30,在方程的兩邊都加20這一步,省寫了虛線框里的內容: x-20+20=30+20,直接寫出x=30+20。這樣做能使解方程的考慮流暢、書寫簡便,從而提升解方程的能力。教學時要讓同學體會簡化的過程,重點討論圓圈里填什么符號、方框里填什么數以和為什么。第8頁“練一練”第1題、第10頁第2題的編排意圖與上面相同。

            《方程》教案 篇3

              教學內容:教科書第13~14頁,“練習與應用”第5~7題,“探索與實踐”第8~9題及“與反思”。

              教學目標:

              1、通過練習與應用,使學生進一步掌握列方程解決實際問題的方法與步驟,提高列方程解決實際問題的意識和能力。

              2、通過小組合作,進一步培養學生探索的意識,發展思維能力。

              3、通過與反思,使學生養成良好的學習習慣,獲得成功體驗,增強學好數學的信心。

              教學過程:

              一、練習與應用

              1、談話引入這節課我們繼續對列方程解決實際問題進行練習。板書課題。

              2、指導練習。獨立完成5~7題。展示交流。集體評講。你是根據什么等量關系列出方程的?在解方程時要注意什么?(步驟、格式、檢驗)

              二、探索與實踐

              1、完成第8題。理解題意,完成填寫。小組中交流第一個問題。匯報自己發現。把得到的和分別除以3,看看可以發現什么?可以得出什么結論?獨立解答第二個問題。你是怎么解答第二個問題的?指導解答第三個問題。試著連續寫出5個奇數,看看有什么發現?怎樣求n的值呢?5個連續偶數的'和有這樣的規律嗎?試試看。

              2、完成第9題。小組中討論方法,巡視指導。可以先把左邊的兩邊都去掉兩個蘋果。1個梨=3個蘋果再根據右邊圖:3個蘋果=6個獼猴桃=1個梨

              三、與反思

              在小組中說說自己對每次指標的理解。自我反思與。說說自己的優點與不足。

              四、閱讀“你知道嗎”可以再查找資料,詳細了解。

              五、課堂這節課我們復習了哪些內容?你有了哪些收獲?

            《方程》教案 篇4

              四年級(下冊)用字母表示數教學含有字母的式子,學生初步學會了寫式子的方法。五年級(下冊)方程教學了方程的意義、用等式的性質解一步計算的方程,學生能夠列方程解答簡單的實際問題。本單元繼續教學方程,要解類似于axb=c、axbx=c的方程,并用于解決稍復雜的實際問題。教學內容的編排有以下特點。

              第一,把解方程和列方程解決實際問題的教學融為一體,同步進行,這是和以前教材的不同編排。在例1里,解2x-22=64這個方程是新知識,用它解答實際問題也是新知識。在例2里,解方程x+3x=290是新授內容,解決的實際問題也是新授內容。這兩道例題,既教學解方程的思路與方法,又教學列方程的相等關系和技巧。這樣編排,能較好地體現數學內容和現實生活的聯系。一方面分析實際問題里的數量關系,抽象成方程,形成知識與技能的教學內容;另一方面,利用方程解決實際問題,使知識技能的教學具有現實意義,成為數學思考、解決問題、情感態度有效發展的載體。

              第二,突出思想方法,通過舉一反三培養能力。全單元編排的兩道例題、兩個練習,涵蓋了很寬的知識面。先看解方程。例 1教學ax-b=c這樣的方程,練習一里還要解ax+b=c、a+bx=c這些形式的方程。從例題到習題,雖然方程的結構變了,但應用等式的性質解方程是不變的。也就是說,解方程的策略是一致的,知識與方法的具體應用是靈活的。再看列方程。例1把一個數比另一個數的2倍少22作為相等關系,練一練和練習一里陸續出現一個數比另一個數的幾倍多幾、三角形的面積計算公式以及其他的相等關系。實際問題變了,尋找相等關系是解題的關鍵步驟始終不變。在例2和練習二里也有類似的安排。無論教學解方程還是列方程,例題講的是思想方法,以不變的思想方法應對多變的實際情況,有利于形成解決問題的策略,培養創新精神和實踐能力。

              全單元內容分成三部分,例1和練習一教學一般的分兩步解的方程;例2和練習二教學特殊的需兩步解的方程;整理與練習回憶、整理、應用全單元的教學內容,反思、評價教學過程和效果。

              一、 解稍復雜方程的策略轉化成簡單的方程。

              兩道例題里的方程都要分兩步解,通過第一步運算,把稍復雜的方程轉化成五年級(下冊)里教學的簡單方程,使新知識植根于已有經驗和能力的基礎上。化復雜為簡單、變未知為已知是人們解決新穎問題的常用策略。這兩道例題突出轉化的過程,不僅使學生掌握解稍復雜的方程的方法,還讓他們充分體驗轉化思想,發展解決問題的策略。

              1. 從各個方程的特點出發,使用不同的轉化方法。

              解形如axb=c的方程,一般根據等式兩邊同時加上或減去同一個數,結果仍然是等式的性質化簡。例1在列出方程2x-22=64以后,教材里寫出了解這個方程的第一步: 2x-22+22=64+22。教學要讓學生理解為什么等號的兩邊都加上22,體會這樣做是應用了等式的性質,感受這樣做的目的是把稍復雜的方程化簡。過去教材里強調把ax看成一個數,是為了應用加、減法中各部分的關系解方程,新教材應用等式的性質解方程,突出轉化的思想和方法。

              解形如axbx=c的方程,一般應用運算律或相應的知識化簡。axbx可以改寫成

              (ab)x,這已經在四年級(下冊)用字母表示數時掌握了,現在只要計算ab,就能實現化簡原方程的目的。教學時仍然要讓學生理解為什么可以這樣改寫,以及這樣改寫的目的。

              2. 轉化后的簡單方程,教法不同。

              例1讓學生算出2x=?,并求出x的值。這是因為學生具有解2x=86這個方程的能力。教學這樣安排,是把轉化思想和方法放在突出位置上,促進新舊知識的銜接,有效地使用教學資源。把求得的x的值代入原方程進行檢驗,在五年級(下冊)已經教學。例1提出檢驗的要求,不僅是培養良好的習慣,還要通過結果是正確的,確認解稍復雜方程的策略和方法是正確的。

              例2把原方程化簡成4x=290,沒有讓學生接著解。教材寫出x=72.5并繼續算出3x=217.5,是因為72.5米和217.5米是實際問題的兩個答案。學生以往解答的問題,一般只有一個問題,這道例題有兩個問題,需要完整呈現解題過程,在步驟、書寫格式上作出示范,便于學生掌握。另外,檢驗的思路也有拓展。由于題目的特點,不能局限于對解方程的檢驗,還要聯系實際問題里的數量關系,檢驗算得的陸地面積和水面面積是不是一共290公頃,水面面積是不是陸地面積的3倍。教學時要注意到這一點,既保障解方程是正確的,更保障列出的方程符合實際問題里的數量關系。

              3. 加強解方程的練習。

              前面曾經說到,例1和例2都有列方程和解方程兩個教學內容,列出的方程必須正確地解,才可能得到正確的`答案。因此,兩個練習的第1題都安排了解方程。練習一在例1解方程的基礎上向兩個方向擴展,一是引出了a+bx=c、ax-b=c等結構與例題不完全相同的方程,二是把小數及運算納入了方程。只要體會了例題里解方程的轉化思想和轉化方法,會進行小數四則計算,就能夠適應這兩個方面的擴展。要注意的是,小學階段不要求解形如a-bx=c的方程。因為解這個方程,如果等式的兩邊都減a,就會出現-bx=c-a,不但等號左邊是負數,而且右邊c比a小;如果等式的兩邊都加bx,就出現a=c+bx,這些都是現在難以解決的問題。練習二在例2解方程的基礎上帶出形如ax-bx=c的方程,解方程涉及的除法計算都控制在三位數除以兩位數以及相應的小數除法范圍內,學生一般不會有困難。

              還有一點要提及,整理與練習中安排小組討論像3.4x+1.8=8.6、5x-x=24這樣的方程各應怎樣解,表明教材十分重視引導學生組建認知結構。如果既從兩個方程的特點回顧解法的不同,又從策略角度進行整理,對學生是有好處的。練習中出現的方程15x2=60,是為應用三角形面積公式解決實際問題服務的。

              二、 列方程解決實際問題的關鍵找出相等關系。

              列方程解決實際問題要找到相等關系,方程是依據相等關系列的。其實,某個實際問題為什么選擇列方程的方法解答,或者為什么選擇列算式的方法解答,經常是由相等關系決定的。所以,兩道例題的教學,都是先找出相等關系。

              相等關系是一種數學模型,它把數量關系表達成等式。列算式解決實際問題要分析數量關系,這時的分析著眼于挖掘已知條件之間的聯系,溝通已知與未知的聯系,通常把條件作為一個方面,問題作為另一個方面,因而用已知數量組成的算式求得問題的答案。實際問題里的相等關系也是數量間的關系,它的最大特點是將已知與未知有機聯系起來,通過已知數量和未知數量共同組成的等式,反映實際問題里最主要的數量關系。學生在五年級(下冊)初步感受了相等關系,能找出簡單問題的相等關系。本冊教學尋找較復雜問題的相等關系,就應充分利用學生已有的知識經驗。

              1. 靈活開展思維活動,找出相等關系。

              較復雜的問題之所以復雜,在于它的數量關系錯綜復雜。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍數關系,也有相差關系,是兩種關系的復合。例2里已知頤和園水面面積與陸地面積一共290公頃,還已知水面面積大約是陸地面積的3倍,這是兩個并列的條件。因此,尋找復雜問題的相等關系,要梳理數量關系,分清主次和先后。

              尋找相等關系沒有固定的模式照搬、照套,教材從實際問題的結構特點和學生的思維發展水平出發,靈活設計尋找相等關系的教學方法。學生在二年級(下冊)已經能解決類似紅花有10朵,求紅花朵數的2倍少4朵是幾朵的問題,對幾倍少幾這樣的數量關系已有初步的理解。因此,例1要求學生找出大雁塔與小雁塔高度之間的相等關系,讓他們利用已有的倍數概念和相差概念,通過推理,把比小雁塔的2倍少22米改寫成數學式子小雁塔高度2-22,從而得到相等關系。例1為什么提出還可以怎樣列方程,這是由于同一個幾倍少幾的關系,可以寫出不同的相等關系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小組里交流想法是尊重學生的思考,允許學生按自己的想法解題。要注意的是,這里不是要求學生一題多解。要組織學生對各種解法進行比較,體會它們在概念上是一致的,僅是表現形式不同;還要引導學生體會例題里呈現的等量關系,得出答案時的思考比較順,從而自覺應用這樣的等量關系。對于學生中未出現的相等關系,不必提及,以免搞亂思路。

              怎樣合理利用例2里的兩個并列的已知條件?教材選擇了線段圖。先在表示水面面積的線段上填3x,再在線段圖的右邊括號里填290,在圖上感受水面面積和陸地面積之間的倍數關系和相并關系。然后通過填空寫出等量關系,體會水面面積和陸地面積一共290公頃是這個實際問題里的等量關系。

              2. 加強寫式練習,進一步把握數量關系,為列方程打基礎。

              含有字母的式子是方程的重要組成部分,根據數量關系列方程時,都要寫出含有字母的式子。是否具有用字母表示數的意識,能否順利寫出含有字母的式子,對列方程解答實際問題是至關重要的。因此,教材加強寫式的練習。

              練習一第2題寫出表示梨樹棵數的式子3x+15,表示鳊魚尾數的式子4x-80,都是解答幾倍多幾、幾倍少幾實際問題所需要的基本技能。安排寫式練習,使學生進一步理解數量關系,養成順著梨樹比桃樹的3倍多15棵、鳊魚比鯽魚的4倍少80尾這些數量關系的表述進行思考,并轉化成數學式子的習慣,從而選擇最適當的相等關系解決實際問題。所以,這道練習題既是寫式訓練,也是思路引導。

              練習二第2題是和倍、差倍問題的專項訓練。根據黃花x朵和紅花朵數是黃花的3倍,先寫出紅花有3x朵,用含有字母的式子表示紅花的朵數,再用x+3x(或4x)表示兩種花一共的朵數,用3x-x(或2x)表示紅花比黃花多的朵數,發展聯想能力。聯想到的式子,正是方程里等號左邊的部分,這道題也在寫式訓練的同時,進行思路引導。

              3. 列方程解答新穎的問題,拓展等量關系。

              本單元安排兩節練習課,分別教學練習一第6~13題、練習二第6~11題。著重解答一些與例題不同的實際問題,找到這些問題的等量關系是教學重點,也是難點,對發展數學思考非常有益。

              練習一第7題起拓展等量關系的作用。第(1)小題畫出了三角形,學生看到圖上的高和底,就能想到三角形的面積計算公式,于是把底高2=三角形的面積作為解題時的等量關系。第(2)小題利用熟悉的括線表示19.8元的意思,形象顯示了3枝鉛筆的錢+1個文具盒的錢=一共的錢是問題里的等量關系。教材的意圖是通過這些題打開思路,讓學生體會不同的問題里有不同的等量關系,兩個部分數之和往往是可利用的等量關系。這就為繼續解答第8、9、12題作了有益的鋪墊。至于第13題,把兩種溫度的換算公式作為等量關系。公式在題中已經揭示,只要在它上面體會已知華氏溫度求攝氏溫度,列方程解答比較好。反之,已知攝氏溫度求華氏溫度,依據公式能直接列出算式。

              例2和練一練分別是典型的和倍、差倍問題,已知的總數或相差數是等量關系的生長點。練習二第7~11題的題材和例題不同,且各有特點。但是,等量關系的載體仍然是已知的總數與相差數。第7題用線段圖配合展示題意,便于學生發現小麗走的米數+小明走的米數=兩地相距的米數這一等量關系,并把這個經驗遷移到解答后面的習題中去。

            【《方程》教案】相關文章:

            05-28

            11-17

            01-14

            03-31

            04-16

            04-19

            02-20

            01-27

            07-27

            11-12

            最新推薦

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院