<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>

            八年級下冊數學試卷及答案

            時間:2025-12-06 13:29:26 數學試題 我要投稿

            2017年八年級下冊數學試卷及答案

              導讀:一個人的自信,是成功的一半;平淡,是成功的驛站;努力,是成功的積淀;祝福,是成功的先決條件。下面是應屆畢業生小編為大家搜集整理出來的有關于2017年八年級下冊數學試卷及答案,想了解更多相關信息請持續關注我們應屆畢業生考試網!

            2017年八年級下冊數學試卷及答案

              八年級下冊數學知識期末試題

              一、選擇題:本大題共12小題,共36分,在每小題給出的四個選項中,只有一項是正確的,請把正確的選項選出來.每小題選對得3分,選錯、不選或選出的答案超過一個均記零分.

              1.如果 =x成立,則x一定是(  )

              A.正數 B.0 C.負數 D.非負數

              2.以下列各組數為三角形的三邊,能構成直角三角形的是(  )

              A.4,5,6 B.1,1, C.6,8,11 D.5,12,23

              3.矩形具有而菱形不具有的性質是(  )

              A.對角線互相平分 B.對角線相等

              C.對角線垂直 D.每一條對角線平分一組對角

              4.已知|a+1|+ =0,則直線y=ax﹣b不經過(  )

              A.第一象限 B.第二象限 C.第三象限 D.第四象限

              5.下列四個等式:① ;②(﹣ )2=16;③( )2=4;④ .正確的是(  )

              A.①② B.③④ C.②④ D.①③

              6.順次連接矩形ABCD各邊中點,所得四邊形必定是(  )

              A.鄰邊不等的平行四邊形 B.矩形

              C.正方形 D.菱形

              7.若函數y=kx+2的圖象經過點(1,3),則當y=0時,x=(  )

              A.﹣2 B.2 C.0 D.2

              8.等邊三角形的邊長為2,則該三角形的面積為(  )

              A. B. C. D.3

              9.某同學五天內每天完成家庭作業的時間(時)分別為2,3,2,1,2,則對這組數據的下列說法中錯誤的是

              (  )

              A.平均數是2 B.眾數是2 C.中位數是2 D.方差是2

              10.下列函數中,自變量的取值范圍選取錯誤的是(  )

              A.y=x+2中,x取任意實數 B.y= 中,x取x﹣1的實數

              C.y= 中,x取x﹣2的實數 D.y= 中,x取任意實數

              11.如圖,直線y=kx+b經過點A(2,1),則下列結論中正確的是(  )

              A.當y2時,x1 B.當y1時,x2 C.當y2時,x1 D.當y1時,x2

              12.平行四邊形ABCD的周長32,5AB=3BC,則對角線AC的取值范圍為(  )

              A.6

              二、填空題:本大題共6小題,共24分,只要求填寫最后結果,每小題填對得4分.

              13.計算( + )( ﹣ )的結果為      .

              14.如圖,菱形ABCD的周長為32,對角線AC、BD相交于點O,E為BC的.中點,則OE=      .

              15.若三角形的兩邊長為6和8,要使其成為直角三角形,則第三邊的長為      .

              16.把直線y=﹣x﹣1沿x軸向右平移2個單位,所得直線的函數解析式為      .

              17.為了解某小區居民每月用水情況,隨機抽查了該小區10戶家庭的用水量,結果如表:

              月用水量/噸 10 13 14 17 18

              戶數 2 2 3 2 1

              則這10戶家庭的月平均用水量是      噸.

              18.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后端點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為      .

              三、解答題:本大題共6個小題,滿分60分.解答時請寫出必要的演推過程.

              19.計算:

              (1)

              (2) .

              20.如圖,已知AC=4,BC=3,BD=12,AD=13,ACB=90,試求陰影部分的面積.

              21.為了從甲、乙兩名運動員中選拔一人參加市射擊比賽,在選拔賽上每人打10發,其中甲的射擊環數分別是10,8,7,9,8,10,10,9,10,9.

              (1)計算甲射擊成績的方差;

              (2)經過統計,乙射擊的平均成績是9,方差是1.4.你認為選誰去參加比賽更合適?為什么?

              22.已知一次函數的圖象過點(3,5)與點(﹣4,﹣9),求這個一次函數的解析式.

              23.如圖,已知ABCD的對角線AC與 BD相交于點O,過點O作EFAC,與邊AD、BC 分別交于點 E、F.求證:四邊形AFCE是菱形.

              24.如圖1,正方形ABCD中,點E、F分別為邊AD、CD上的點,且DE=CF,AF、BE相交于點G.

              (1)問:線段AF和BE有怎樣的位置關系和數量關系?(直接寫出結論,不必證明)

              答:      .

              (2)若點E、F分別運動到邊AD的延長線和邊DC的延長線上,其他條件均保持不變(如圖2),此時連接BF和EF,M、N、P、Q分別為AE、EF、BF、AB的中點,請判斷四邊形MNPQ是矩形、菱形、正方形中的哪一種?并寫出證明過程.

              八年級下冊數學期末試卷參考答案

              一、選擇題:本大題共12小題,共36分,在每小題給出的四個選項中,只有一項是正確的,請把正確的選項選出來.每小題選對得3分,選錯、不選或選出的答案超過一個均記零分.

              1.如果 =x成立,則x一定是(  )

              A.正數 B.0 C.負數 D.非負數

              【考點】二次根式的性質與化簡.

              【分析】根據二次根式的性質進行解答即可.

              【解答】解:∵ =x,x0,故選:D.

              2.以下列各組數為三角形的三邊,能構成直角三角形的是(  )

              A.4,5,6 B.1,1, C.6,8,11 D.5,12,23

              【考點】勾股定理的逆定理.

              【分析】由勾股定理的逆定理,只要驗證兩小邊的平方和等于最長邊的平方即可.

              【解答】解:A、42+5262,故不是直角三角形,故此選項錯誤;

              B、12+12=( )2,故是直角三角形,故此選項正確;

              C、62+82112,故不是直角三角形,故此選項錯誤;

              D、52+122232,故不是直角三角形,故此選項錯誤.

              故選B.

              3.矩形具有而菱形不具有的性質是(  )

              A.對角線互相平分 B.對角線相等

              C.對角線垂直 D.每一條對角線平分一組對角

              【考點】矩形的性質;菱形的性質.

              【分析】分別根據矩形和菱形的性質可得出其對角線性質的不同,可得到答案.

              【解答】解:矩形的對角線相等且平分,菱形的對角線垂直且平分,

              所以矩形具有而菱形不具有的為對角線相等,

              故選B.

              4.已知|a+1|+ =0,則直線y=ax﹣b不經過(  )

              A.第一象限 B.第二象限 C.第三象限 D.第四象限

              【考點】一次函數圖象與系數的關系;非負數的性質:絕對值;非負數的性質:算術平方根.

              【分析】根據絕對值和算術平方根的非負性即可得出a、b的值,將其代入直線解析式中,再利用一次函數圖象與系數的關系即可得出該直線經過的象限,此題得解.

              【解答】解:∵|a+1|+ =0,

              ,即 ,

              直線y=ax﹣b=﹣x﹣2,

              ∵﹣10,﹣20,

              直線y=ax﹣b經過第二、三、四象限.

              故選A.

              5.下列四個等式:① ;②(﹣ )2=16;③( )2=4;④ .正確的是(  )

              A.①② B.③④ C.②④ D.①③

              【考點】二次根式的性質與化簡;二次根式有意義的條件.

              【分析】本題考查的是二次根式的意義:① =a(a0),② =a(a0),逐一判斷.

              【解答】解:① = =4,正確;

              ② =(﹣1)2 =14=416,不正確;

              ③ =4符合二次根式的意義,正確;

              ④ = =4﹣4,不正確.

              ①③正確.

              故選:D.

              6.順次連接矩形ABCD各邊中點,所得四邊形必定是(  )

              A.鄰邊不等的平行四邊形 B.矩形

              C.正方形 D.菱形

              【考點】中點四邊形.

              【分析】作出圖形,根據三角形的中位線定理可得EF=GH= AC,FG=EH= BD,再根據矩形的對角線相等可得AC=BD,從而得到四邊形EFGH的四條邊都相等,然后根據四條邊都相等的四邊形是菱形解答.

              【解答】解:如圖,連接AC、BD,

              ∵E、F、G、H分別是矩形ABCD的AB、BC、CD、AD邊上的中點,

              EF=GH= AC,FG=EH= BD(三角形的`中位線等于第三邊的一半),

              ∵矩形ABCD的對角線AC=BD,

              EF=GH=FG=EH,

              四邊形EFGH是菱形.

              故選:D.

              7.若函數y=kx+2的圖象經過點(1,3),則當y=0時,x=(  )

              A.﹣2 B.2 C.0 D.2

              【考點】一次函數圖象上點的坐標特征.

              【分析】直接把點(1,3)代入一次函數y=kx+2求出k的值,再代入解答即可.

              【解答】解:∵一次函數y=kx+2的圖象經過點(1,3),

              3=k+2,解得k=1.

              把y=0代入y=x+2中,解得:x=﹣2,

              故選A

              8.等邊三角形的邊長為2,則該三角形的面積為(  )

              A. B. C. D.3

              【考點】等邊三角形的性質.

              【分析】如圖,作CDAB,則CD是等邊△ABC底邊AB上的高,根據等腰三角形的三線合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的長,代入面積計算公式,解答出即可;

              【解答】解:作CDAB,

              ∵△ABC是等邊三角形,AB=BC=AC=2,

              AD=1,

              在直角△ADC中,

              CD= = = ,

              S△ABC= 2 = ;

              故選C.

              9.某同學五天內每天完成家庭作業的時間(時)分別為2,3,2,1,2,則對這組數據的下列說法中錯誤的是

              (  )

              A.平均數是2 B.眾數是2 C.中位數是2 D.方差是2

              【考點】方差;算術平均數;中位數;眾數.

              【分析】根據眾數、中位數、平均數和方差的計算公式分別進行解答,即可得出答案.

              【解答】解:平均數是:(2+3+2+1+2)5=2;

              數據2出現了3次,次數最多,則眾數是2;

              數據按從小到大排列:1,2,2,2,3,則中位數是2;

              方差是: [(2﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2]= ,

              則說法中錯誤的是D;

              故選D.

              10.下列函數中,自變量的取值范圍選取錯誤的是(  )

              A.y=x+2中,x取任意實數 B.y= 中,x取x﹣1的實數

              C.y= 中,x取x﹣2的實數 D.y= 中,x取任意實數

              【考點】函數自變量的取值范圍.

              【分析】根據被開方數大于等于0,分母不等于0列式計算即可得解.

              【解答】解:A、y=x+2中,x取任意實數,正確,故本選項錯誤;

              B、由x+10得,x﹣1,故本選項正確;

              C、由x+20得,x﹣2,故本選項錯誤;

              D、∵x20,

              x2+11,

              y= 中,x取任意實數,正確,故本選項錯誤.

              故選B.

              11.如圖,直線y=kx+b經過點A(2,1),則下列結論中正確的是(  )

              A.當y2時,x1 B.當y1時,x2 C.當y2時,x1 D.當y1時,x2

              【考點】一次函數的性質.

              【分析】根據函數圖象可直接得到答案.

              【解答】解:∵直線y=kx+b經過點A(2,1),

              當y1時,x2,

              故選:B.

              12.平行四邊形ABCD的周長32,5AB=3BC,則對角線AC的取值范圍為(  )

              A.6

              【考點】平行四邊形的性質;三角形三邊關系.

              【分析】根據平行四邊形周長公式求得AB、BC的長度,然后由三角形的三邊關系來求對角線AC的取值范圍.

              【解答】解:∵平行四邊形ABCD的周長32,5AB=3BC,

              2(AB+BC)=2( BC+BC)=32,

              BC=10,

              AB=6,

              BC﹣AB

              故選D.

              二、填空題:本大題共6小題,共24分,只要求填寫最后結果,每小題填對得4分.

              13.計算( + )( ﹣ )的結果為 ﹣1 .

              【考點】二次根式的混合運算.

              【分析】根據平方差公式:(a+b)(a﹣b)=a2﹣b2,求出算式( + )( ﹣ )的結果為多少即可.

              【解答】解:( + )( ﹣ )

              =

              =2﹣3

              =﹣1

              ( + )( ﹣ )的結果為﹣1.

              故答案為:﹣1.

              14.如圖,菱形ABCD的周長為32,對角線AC、BD相交于點O,E為BC的中點,則OE= 4 .

              【考點】菱形的性質.

              【分析】先根據菱形的性質得到BC=8,ACBD,然后根據直角三角形斜邊上的中線性質求解.

              【解答】解:∵四邊形ABCD為菱形,

              BC=8,ACBD,

              ∵E為BC的中點,

              OE= BC=4.

              故答案為4.

              15.若三角形的兩邊長為6和8,要使其成為直角三角形,則第三邊的長為 10或2  .

              【考點】勾股定理的逆定理.

              【分析】分情況考慮:當較大的數8是直角邊時,根據勾股定理求得第三邊長是10;當較大的數8是斜邊時,根據勾股定理求得第三邊的長是 =2 .

              【解答】解:①當6和8為直角邊時,

              第三邊長為 =10;

              ②當8為斜邊,6為直角邊時,

              第三邊長為 =2 .

              故答案為:10或2 .

              16.把直線y=﹣x﹣1沿x軸向右平移2個單位,所得直線的函數解析式為 y=﹣x+1 .

              【考點】一次函數圖象與幾何變換.

              【分析】直接根據左加右減的平移規律求解即可.

              【解答】解:把直線y=﹣x﹣1沿x軸向右平移2個單位,所得直線的函數解析式為y=﹣(x﹣2)﹣1,即y=﹣x+1.

              故答案為y=﹣x+1.

              17.為了解某小區居民每月用水情況,隨機抽查了該小區10戶家庭的用水量,結果如表:

              月用水量/噸 10 13 14 17 18

              戶數 2 2 3 2 1

              則這10戶家庭的月平均用水量是 14 噸.

              【考點】加權平均數.

              【分析】計算出10戶家庭的月平均用水量的加權平均數即可得到問題答案.

              【解答】解:根據題意得:

              =14(噸),

              答:這10戶家庭的月平均用水量是14噸,

              故答案為:14.

              18.如圖,在平面直角坐標系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后端點D恰好落在邊OC上的點F處.若點D的坐標為(10,8),則點E的坐標為 (10,3) .

              【考點】翻折變換(折疊問題);坐標與圖形性質.

              【分析】根據折疊的性質得到AF=AD,所以在直角△AOF中,利用勾股定理來求OF=6,然后設EC=x,則EF=DE=8﹣x,CF=10﹣6=4,根據勾股定理列方程求出EC可得點E的坐標.

              【解答】解:∵四邊形A0CD為矩形,D的坐標為(10,8),

              AD=BC=10,DC=AB=8,

              ∵矩形沿AE折疊,使D落在BC上的點F處,

              AD=AF=10,DE=EF,

              在Rt△AOF中,OF= =6,

              FC=10﹣6=4,

              設EC=x,則DE=EF=8﹣x,

              在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,

              即EC的長為3.

              點E的坐標為(10,3),

              故答案為:(10,3).

              三、解答題:本大題共6個小題,滿分60分.解答時請寫出必要的演推過程.

              19.計算:

              (1)

              (2) .

              【考點】二次根式的混合運算.

              【分析】(1)先化簡二次根式、計算乘方,再計算乘除法、運用平方差公式去括號,最后計算加減法即可;

              (2)用乘法分配律去括號后合并同類二次根式即可

              【解答】解:(1)原式=32 2 +(7+4 )(4 ﹣7)

              = +48﹣49

              = .

              (2)原式=3+ ﹣ ﹣1=2.

              20.如圖,已知AC=4,BC=3,BD=12,AD=13,ACB=90,試求陰影部分的面積.

              【考點】勾股定理;勾股定理的逆定理.

              【分析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判斷出△ABD是直角三角形,然后分別求出兩個三角形的面積,相減即可求出陰影部分的面積.

              【解答】解:連接AB,

              ∵ACB=90,

              AB= =5,

              ∵AD=13,BD=12,

              AB2+BD2=AD2,

              △ABD為直角三角形,

              陰影部分的面積= ABBD﹣ ACBC=30﹣6=24.

              答:陰影部分的面積是24.

              21.為了從甲、乙兩名運動員中選拔一人參加市射擊比賽,在選拔賽上每人打10發,其中甲的射擊環數分別是10,8,7,9,8,10,10,9,10,9.

              (1)計算甲射擊成績的方差;

              (2)經過統計,乙射擊的平均成績是9,方差是1.4.你認為選誰去參加比賽更合適?為什么?

              【考點】方差.

              【分析】(1)先求出甲射擊成績的平均數,再由方差公式求出甲射擊成績的方差即可;

              (2)根據平均數和方差的意義,即可得出結果.

              【解答】解:(1)∵ = (10+8+7+9+8+10+10+9+10+9)=9,

              = [(10﹣9)2+(10﹣8)2++(9﹣9)2]=1,;

              (2)選甲運動員去參加比賽更合適;理由如下:

              因為甲、乙射擊的平均成績一樣,而且甲成績的方差小,說明甲與乙射擊水平相當,但是甲比賽狀態更穩定,所以選甲運動員去參加比賽更合適.

              22.已知一次函數的圖象過點(3,5)與點(﹣4,﹣9),求這個一次函數的解析式.

              【考點】待定系數法求一次函數解析式.

              【分析】把兩點代入函數解析式得到一二元一次方程組,求解即可得到k、b的值,函數解析式亦可得到.

              【解答】解:設一次函數為y=kx+b(k0),

              因為它的圖象經過(3,5),(﹣4,﹣9),

              所以

              解得: ,

              所以這個一次函數為y=2x﹣1.

              23.如圖,已知ABCD的對角線AC與 BD相交于點O,過點O作EFAC,與邊AD、BC 分別交于點 E、F.求證:四邊形AFCE是菱形.

              【考點】菱形的判定;平行四邊形的性質.

              【分析】由ABCD的對角線AC與 BD相交于點O,EFAC,易得EF垂直平分AC,即可證得△AOE≌△COF,繼而可得AE=CF,則可證得結論.

              【解答】證明:∵四邊形ABCD是平行四邊形

              AO=CO,AD∥BC

              又∵EFAC,

              EF垂直平分AC,

              AE=EC

              ∵AD∥BC,

              DAC=ACB,AE∥CF,

              在△AOE和△COF中,

              ,

              △AOE≌△COF(ASA),

              AE=CF,

              又∵AE∥CF,

              四邊形AFCE是菱形.

              24.如圖1,正方形ABCD中,點E、F分別為邊AD、CD上的點,且DE=CF,AF、BE相交于點G.

              (1)問:線段AF和BE有怎樣的位置關系和數量關系?(直接寫出結論,不必證明)

              答: 線段AF和BE的位置關系是互相垂直,數量關系是相等 .

              (2)若點E、F分別運動到邊AD的延長線和邊DC的延長線上,其他條件均保持不變(如圖2),此時連接BF和EF,M、N、P、Q分別為AE、EF、BF、AB的中點,請判斷四邊形MNPQ是矩形、菱形、正方形中的哪一種?并寫出證明過程.

              【考點】四邊形綜合題.

              【分析】(1)結論:AFBE,AF=BE.只要證明△ABE≌△DAF即可解決問題.

              (2)結論:四邊形MNPQ是正方形,先證明△ABE≌△DAF,推出AF=BE,AFBE,再證明四邊形MNPQ是正方形即可.

              【解答】解:(1)如圖1中,∵四邊形ABCD是正方形,

              AB=AD=CD,BAC=ADC=90,

              ∵DE=CF,

              AE=DF,

              在△ABE和△DAF中,

              ,

              △ABE≌△DAF,

              AF=BE,AEB=AFD,

              ∵AFD+FAD=90,

              AEB+FAD=90,

              EGA=90,

              BEAF.

              故答案為線段AF和BE的位置關系是互相垂直,數量關系是相等.

              (2)結論:四邊形MNPQ是正方形.

              理由:如圖2中,∵四邊形ABCD是正方形,

              AD=AB=DC,

              ∵DE=CF,

              AE=DF,

              在△ABE和△DAF中,

              ,

              △ABE≌△DAF,

              AF=BE,AEB=AFD,

              ∵AFD+FAD=90,

              AEB+FAD=90,

              EGA=90,

              BEAF.

              ∵M、N、P、Q分別為AE、EF、BF、AB的中點,

              MN∥AF∥QP,MQ∥EB∥NP,

              MN=PQ= AF,MQ=NP= BE,

              MN=NP=PQ=MQ,

              四邊形MNPQ是菱形,

              ∵AFEB,EB∥NP,

              NPAF,

              ∵MN∥AF,

              MNNP,

              MNP=90,

              四邊形MNPQ是正方形.


            【八年級下冊數學試卷及答案】相關文章:

            小升初數學試卷及答案09-03

            小升初數學試卷及答案12-17

            小升初數學試卷答案11-13

            精選小升初數學試卷及答案10-18

            四年級下冊數學試卷及答案02-23

            小升初數學試卷及答案人教版02-15

            人教版小升初數學試卷及答案03-20

            江蘇小升初數學試卷及答案10-27

            小升初數學試卷及答案參考01-30

            • 相關推薦

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院