<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>

            GRE數學考試數學概念及解析

            時間:2021-01-08 11:59:01 GRE考試 我要投稿

            GRE數學考試數學概念及解析

              GRE考試數學考點:AP

            GRE數學考試數學概念及解析

              Average of n numbers of arithmetic progression (AP) is the average of the smallest and the largest number of them. The average of m number can also be written as x + d(m-1)/2.

              Example:

              The average of all integers from 1 to 5 is (1+5)/2=3

              The average of all odd numbers from 3 to 3135 is (3+3135)/2=1569

              The average of all multiples of 7 from 14 to 126 is (14+126)/2=70

              remember:

              Make sure no number is missing in the middle.

              With more numbers, average of an ascending AP increases.

              With more numbers, average of a descending AP decreases.

              AP:numbers from sum

              given the sum s of m numbers of an AP with constant increment d, the numbers in the set can be calculated as follows:

              the first number x = s/m - d(m-1)/2,and the n-th number is s/m + d(2n-m-1)/2.

              Example:

              if the sum of 7 consecutive even numbers is 70, then the first number x = 70/7 - 2(7-1)/2 = 10 - 6 = 4.  the last number (n=m=7)is 70/7+2(2*7-7-1)/2=10+6=16.the set is the even numbers from 4 to 16.

              Remember:

              given the first number x, it is easy to calculate other numbers using the formula for n-th number: x+(n-1)

              AP:numbers from average

              all m numbers of an AP can be calculated from the average. the first number x = c-d(m-1)/2, and the n-th number is c+d(2n-m-1)/2, where c is the average of m numbers.

              Example:

              if the average of 15 consecutive integers is 20, then the first number x=20-1*(15-1)/2=20-7=13 and the last number (n=m=15) is 20+1*(2*15-15-1)/2=20+7=27.

              if the average of 33 consecutive odd numbers is 67, then the first number x=67-2*(33-1)/2=67-32=35 and the last number (n=m=33) is 67+2*(2*33-33-1)/2=67+32=99.

              Remember:

              sum of the m numbers is c*m,where c is the average.

            【GRE數學考試數學概念及解析】相關文章:

            有關GRE考試數學考試數學概念及解析07-10

            GRE考試數學概念及解析06-27

            GRE數學考試概率考點解析06-14

            關于新GRE數學考試易錯點解析06-14

            GRE數學考試技巧11-11

            GRE數學考試簡介01-09

            GRE數學考試模版07-03

            GRE數學考試經驗06-24

            GRE數學考試方法介紹09-17

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院