<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>

            常見的GMAT數學思維模式總結介紹

            時間:2021-01-08 14:54:45 gmat考試 我要投稿

            常見的GMAT數學思維模式總結介紹

              GMAT數學思維模式1.換元思想

            常見的GMAT數學思維模式總結介紹

              換元法又稱變量替換法,即根據所要求解的式子的結構特征,巧妙地設置新的變量來替代原來表達式中的某些式子或變量,對新的變量求出結果后,返回去再求出原變量的結果。換元法通過引入新的變量,將分散的條件聯系起來,使超越式化為有理式、高次式化為低次式、隱性關系式化為顯性關系式,從而達到化繁為簡、變未知為已知的目的。

              GMAT數學思維模式2.數形結合思想

              數形結合的思想,其實質是將抽象的數學語言與直觀的圖形結合起來,使抽象思維和形象思維結合,通過對圖形的認識,數形結合的轉化,可以培養思維的靈活性,形象性,使問題化難為易,化抽象為具體。 通過形往往可以解決用數很難解決的問題。

              GMAT數學思維模式3.轉化與化歸思想

              所謂轉化與化歸思想方法,就是在研究和解決有關數學問題時,采用某種手段將問題通過變換使之轉化,進而達到解決的一種方法。一般總是將復雜的.問題通過轉化為簡單的問題,將難解的問題通過變換轉化為容易的問題,將未解決的問題變換轉化為已解決的問題。

            【常見的GMAT數學思維模式總結介紹】相關文章:

            2017考研數學的思維定勢10-03

            常見的英文簡歷制作模式12-12

            數學說課稿常見模板04-19

            英文簡歷的幾種常見形式介紹01-29

            面試常見問題以及回答技巧介紹10-14

            c語言常見筆試題總結12-25

            備戰小升初英語面試常見問題的總結04-08

            社保常見的誤區07-10

            常見的招聘陷阱01-16

            常見的求職騙局06-29

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院