數學說課稿初中集合8篇
在教學工作者開展教學活動前,就難以避免地要準備說課稿,寫說課稿能有效幫助我們總結和提升講課技巧。我們該怎么去寫說課稿呢?下面是小編收集整理的數學說課稿初中8篇,希望對大家有所幫助。
數學說課稿初中 篇1
各位專家領導,上午好:今天我說課的課題是《勾股定理》
一、教材分析:
(一)本節內容在全書和章節的地位
這節課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。
(二)三維教學目標:
⒈理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;
⒉通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。
在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。
通過介紹中國古代勾股方面的成就,激發學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養學生的民族自豪感和鉆研精神。
(三)教學重點、難點:
勾股定理的證明與運用
用面積法等方法證明勾股定理
對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。
⒈創設情景,激發思維:創設生動、啟發性的問題情景,激發學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態下進入學習過程;
⒉自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數學問題的.結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協作,從而形成生動的課堂環境;
⒊張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發言人”,一人擔任“書記員”,在討論結束后,由小組的“發言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。
二、教法與學法分析
數學是一門培養人的思維,發展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結構和心理特征,本節課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神。基本的教學程序是“創設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業”六個方面。
新課標明確提出要培養“可持續發展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。
三、教學過程設計
(一)創設情景
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?
問題的設計有一定的挑戰性,目的是激發學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。
(二)動手操作
⒈課件出示課本P99圖19.2.1:
觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?
學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發現SP+SQ=SR(此時讓小組“發言人”發言),從而讓學生通過正方形的面積之間的關系發現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養學生的語言表達能力,體會數形結合的思想。
⒉緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。
⒊再問:當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。
(三)歸納驗證
通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發言人”的積極表現,整堂課充分發揮學生的主體作用,真正獲取知識,解決問題。
先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養學生嚴謹、科學的學習態度。
(四)問題解決
⒈讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。
⒉自學課本P101例1,然后完成P102練習。
(五)課堂小結1.小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。 2.教師用多媒體介紹“勾股定理史話”
①《周髀算徑》:西周的商高(公元一千多年前)發現了“勾三股四弦五”這一規律。
②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創。
目的是對學生進行愛國主義教育,激勵學生奮發向上。
(六)布置作業:課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。
以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!
數學說課稿初中 篇2
說教材:
1.地位和作用:
本節內容是北師版初中數學初一下冊第五章《三角形》的第一節。目的是讓學生在對三角形已有的認識的基礎上,經歷從現實世界中探究出幾何模型的過程,科學認識三角形的相關知識、基本要素及其表示方法,然后引導學生通過實驗、比較等操作活動來探究三角形三邊之間的關系;是"數學來源于生活,而又應用于生活"的'重要體現,是對三角形認識的深化,也是今后繼續系統探究三角形全等、三角形相似等知識的基礎。
2.教學目標:
根據本節課在教材中的地位和作用,結合課程標準要求"教學內容應體現基礎性,要有利于學生主動地進行數學學習活動,讓學生能積極參與數學學習活動,對數學有好奇心和求知欲"的理念。確定本節課的教學目標如下:
(1)知識與技能:
結合具體實例,經歷從現實生活中抽象出幾何模型的過程,小學語文教學視頻進一步認識三角形的概念及其基本要素;經歷觀察、操作、猜想、推理、交流等活動的過程,掌握三角形三邊之間的關系。
(2)過程與方法:
通過動手實踐、自主探索,培養學生自主學習的能力;通過師生互動探究,培養學生合作交流的能力。
(3)情感態度與價值觀:
在教學中滲透數學美、數學分類思想,培養學生濃厚的學習熱情;同時樹立知識來源于生活,又服務于生活的觀點。
3.教學重難點:
由于學生在小學的學習,對三角形已有所認識,生活中也看到不少的三角形模型,也有了兩點之間線段最短的生活經驗。因此,學生對知識的學習可能并不是特別困難,但對從現實生活中抽象出幾何模型,"數學生活化"思想的理解,以及建立模型后通過自主、合作、探究等多種學習方式,展示知識的形成過程,由眾多特例總結歸納三角形三邊關系的理解可能會存在一定的困難。因此,我確定本節課的重難點為:
教學重點:
①認識三角形的概念、基本要素及表示方法。
②三角形三邊關系的探究與理解。
教學難點:三角形三邊關系的探究與理解。
4.教材處理:
為了突出重點、突破難點:我對教材做了部分調整,以"猜謎、擺圖案"激發學生的學習興趣,以"生活中的三角形"為切入口,滲透"數學來源于生活,而又應用于生活"的數學理念。讓學生更加積極地投入到之后的實驗探索中,主動獲取知識。在練習題上巧設坡度,降低難度,弱化學習障礙的影響。
數學說課稿初中 篇3
一、教學目標
1. 知識與技能目標:通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2. 過程與方法目標:激發學生參與整個課堂教學活動的學習興趣, 培養學生的分析、觀察和概括能力,發展學生的空間觀念。
3. 情感態度與價值觀目標:滲透轉化的數學思想和極限思想。
二、教學重點
正確計算圓的面積
三、教學難點
圓面積公式的推導
四、教具準備
多媒體課件,圓片
五、教學設計
(一)復習舊知,導入新課
1. 前面我們學習了圓、圓的周長。如果圓的半徑用r表示,周長怎樣表示?( 2πr)周長的一半怎樣表示?(πr)
2. 課件:出示一塊圓形的桌布。如果要給這塊桌布的邊縫上花邊,是求什么?(圓形桌布的周長)
3.課件:出示一塊圓形的鏡框。如果要鏡框配一塊玻璃,至少需要多大?是求什么?(圓的面積) 誰能指出這個圓的面積?誰能概括一下什么是圓的面積?請同學們用手摸出學具圓的面積。
4. 提問:如果圓的半徑是2分米,你能猜猜這塊玻璃到底有多大?(同學們紛紛地猜測,有的學生可能說這個圓面小于所在的正方形面積)
這塊圓形玻璃有多大,就是要求圓形的面積,這節課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)
(二)動手操作,探索新知
1. 回憶平行四邊形、三角形、梯形面積計算公式推導過程。
(1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?(學生回答,師用課件演示)
(2)通過回憶這三種平面圖形面積計算公式的推導,你發現了什么?(發現這三種平面圖形都是轉化為學過的圖形來推導出它們的面積計算公式)
(3)能不能把圓轉化為學過的.圖形來推導出它的面積計算公式呢?
那么同學們想一想,圓可能轉化為什么平面圖形來計算呢?
2. 推導圓面積的計算公式。
(1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?
(2)學生小組討論。
看拼成的長方形與圓有什么聯系?
學生匯報討論結果。教師評價。
(3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發現什么?(如果分的份數越多,每一份就會越細,拼成的圖形就會越接近于長方形)
(4)你能根據長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。
生邊答師邊演示課件。
生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長×寬
所以圓的面積=周長的一半×半徑
S=πr × r
S=πr2
師小結公式 S=πr2,讓學生小組內說說圓的面積是怎樣推導出來的?
(5)讀公式并理解記憶。
(6)要求圓的面積必須知道什么?(半徑)
3. 利用公式計算。
(1)用新的方法算一算:剛才的玻璃到底有多大?看誰剛才猜得較接近。(學生計算并匯報)
(2)出示例3,學生嘗試練習,反饋評價。
提問:如果這道題告訴的不是圓的半徑,而是直徑,該怎樣解答?不計算,誰知道結果是多少嗎?
(三)運用新知,解決問題
1. 求下面各圓的面積,只列式不計算。(CAI課件出示)
2. 測量一個圓形實物的直徑,計算它的周長及面積。
3. 課件演示: 用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題并計算)(羊吃到草的最大面積即最大圓面積是多少?)
(四)全課小結
這節課你自己運用了什么方法,學到了哪些知識?師生共同回顧。
(五)布置作業
1. 第97頁的第3題和第4題。
2.找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物 直徑(厘米) 半徑(厘米) 面積(平方厘米)
六、板書設計:
圓的面積
長方形的面積=長×寬
圓的面積=周長的一半×半徑
S=πr×r
S=πr2
數學說課稿初中 篇4
各位老師:
大家好。今天我說課的題目是《平行四邊形的性質》,我將從教材分析、學情、教法與學法、教學過程、板書設計和教學反思等幾個方面進行說課。
一、教材分析
1、教材所處的地位和作用
《平行四邊形的性質》是人教版八年級數學下冊第十八章第一節內容它是在學生掌握了平行線、三角形及平行四邊形等幾何知識的基礎上學習的,它不僅是對已學平行線、三角形等知識的綜合應用和深化,又是下一步學習矩形、菱形、正方形等知識的基礎,起著承上啟下的作用。
2、教學目標
根據新課標的要求及學生的實際情況,本節我制定了如下目標:
知識與技能目標:理解平行四邊形的定義,探究平行四邊形的性質;利用平行四邊形的性質進行有關的證明和計算,解決簡單的實際問題;
過程與方法目標:通過觀察、猜測、歸納、證明,能運用數學語言合乎邏輯地進行討論與質疑,發展學生合理的推理意識,培養主動探究的習慣;
情感態度與價值觀目標:通過平行四邊形性質的應用過程,培養學生獨立思考的習慣,在數學學習活動中獲得成功的體驗進一步認識數學與生活的密切聯系,體驗數學來源于生活又服務于生活。
3、教學重點、難點
基于以上的分析,我認為本節課的重點是:平行四邊形性質的探究與應用;難點是:平行四邊形性質的探究,即如何添加輔助線將平行四邊形問題轉化為三角形問題來解決的思想方法。
二、學情及教法分析
初二的學生正處于青春期,主動學習的積極性需要敦促,針對這種情況及本節課的特點,結合我校課題"因材施教,當堂達標"發揮學生主體地位,教師"引導-輔導-指導-講評-歸納"有目的的輔助學生學習。
1、利用直觀形象的圖片、模型,引導學生在觀察、操作、猜測、驗證與交流等數學活動中發現平行四邊形的性質發揮學生的觀察能力、聯想力,大膽猜測平行四邊形的可能性。
2、注重學生參與,合作交流,讓學生在教師的指導下自始至終處于積極思維,主動探究的學習狀態,同時借助多媒體進行演示,以增加教學的直觀性。
三、學法指導
1、觀察猜想以學生的觀察、猜想為主,要求學生多觀察,大膽猜想,主動探索來了解平行四邊形的性質。
2、合作交流采取積極引導、主動參與、互相交流來組織教學,使學生真正成為教學的主體,體會成功的喜悅。
四、教學準備
ppt課件,平行四邊形教具
五、教學過程
(一)溫故思新,情境導入
首先復習四邊形的定義及四邊形的有關性質然后課件顯示章前圖和一些圖片提出問題:你能從圖中找出我們熟悉的幾何圖形嗎?
這個問題是校園操場的圖片,學生可以見識各種四邊形的形狀通過查找長方形、正方形、平行四邊形、梯形等起到復習的作用,為進一步比較系統地學習這些圖形做準備,并明確本章的學習任務
(二)自主學習,發現問題
通過觀察圖片,讓學生舉出身邊存在的平行四邊形的例子通過舉例,為學生提供參與活動的時間和空間,調動學生的主觀能動性,激發求知欲,培養學生形象思維
然后自學課本83頁-84頁例1上面的內容,教師出示問題:
1、通過觀察圖片,找出圖形的共同特征,說出平行四邊形的定義?
2、你會用符號表示一個平行四邊形嗎?想一想用符號表示時要注意什么問題?
如圖平行四邊形ABCD記作:□ABCD(略)
3、通過觀察測量自做的平行四邊形你能發現平行四邊形的特點嗎?
邊:對邊平行且相等
角:對角相等,鄰角互補
4、你能證明你發現的結論嗎?
此環節的設計意圖:從實例圖片中抽象出平行四邊形的幾何圖形,培養學生的抽象思維,讓學生感受到數學與我們生活的密切聯系通過自學加深理解,發現問題,提高自主學習能力感受動手測量,猜想的樂趣,培養猜想的意識教師巡視引導,幫助學生自學。
(三)合作交流,解決問題
小組合作交流,共同解決自主學習過程中發現的問題:尋找證明的方法當學生有疑惑時,教師巡視輔導:我們目前證明線段、角相等的方法是什么?(利用三角形全等來證明)而圖中沒有三角形該怎么辦?引導學生得出需構造輔助線,將四邊形問題轉化為三角形問題來解決學生完成證明,歸納平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等,鄰角互補并引導學生寫出性質的幾何語言。
設計意圖:通過交流和引導,明確目前證明線段、角相等的常用方法是證明三角形全等學生完成證明,驗證猜想的正確性,讓學生感受到數學的嚴謹性,數學結論的確定性和證明的必要性對平行四邊形性質的歸納,培養了學生的合作交流能力和概括能力,突出了教學的重點。
(四)小組展示,學以致用
1、小組代表展示交流的`結果,通過實物投影講解平行四邊形性質的證明過程培養學生語言組織能力和思維邏輯能力。
2、探究例1:
小明用一根36米長的繩子圍成一個平行四邊形的場地,其中一條邊AB長為8米,其他三條邊各長多少?
教師引導學生審題,學生弄清題意后教師示范解題過程,并重點強調解答中平行四邊形性質的幾何表述。
設計意圖:通過運用平行四邊形的性質,學會解決簡單的實際問題,讓學生認識到數學在現實世界中有著廣泛的應用,培養了學生的應用意識。
(五) 課堂練習,鞏固新知
(1)在□ABCD中,AB=5,BC=3求它的周長。
(2)一個平行四邊形的外角是38,這個平行四邊形的每個內角的度數分別是多少?為什么?
(3)剪兩張對邊平行的紙條,隨意叉疊放在一起,轉動其中一張,重合的部分構成了一個四邊形線段AB和DC有什么關系?
練習(2)(3)需說出理由,這對學生的語言表達能力有一定的要求,因此要求學生有條理的寫出解題過程。
(六) 作業設計,強化新知
1、選擇題:
(1)平行四邊形的兩鄰角的角平分線相交所成的角為()
A、銳角B、直角C、鈍角D、不能確定
(2)平行四邊形的周長為24cm,相鄰兩邊的差為2cm,則平行四邊形的各邊長為( )
A、4cm,4cm,8cm,8cm B、5cm,5cm,7cm,7cm C、5.5cm,5.5cm,6.5cm,6.5cm D、3cm,3cm,9cm,9cm
(3)下面的性質中,平行四邊形不一定具有的是()
A、對角互補 B、鄰角互補 C、對角相等 D、對邊相等
2、填空題:
(1)如圖所示,DE∥AB,EF∥BC,DF∥AC,圖中有_個平行四邊形
(2)平行四邊形的一組對角度數之和為200°,則平行四邊形中較大的角為
3、解答題:
如圖,在□ABCD中,∠A+∠C=160°,求∠A、∠B,∠C,∠D的度數
設計意圖:課堂練習的“及時性”是很重要的。練習的設計目的在于鞏固當堂課上的主要內容。
(六)課堂小結:
1、這節課你的收獲是什么?
2、還有什么困惑?
設計意圖:通過評價反思引導學生概括本節課學習的內容,對知識進行梳理,這樣有利于強化學生對知識的理解和記憶,提高分析和小結的能力。
六、板書設計
平行四邊形的性質
定義:兩組對邊分別平行的四邊形 例1:(略)
記作:□ABCD
性質:平行四邊形的對邊相等且平行;
平行四邊形的對角相等,鄰角互補
平行四邊形的對角線互相平分
設計意圖:簡明扼要,突出了本節教學重點,便于理清本節知識結構,增強教學效果,提高教學效率。
七、教學反思:
本節課根據學生的認知規律,本著激發興趣,積極投入,由易到難,突破難點,突出重點,充分發揮學生的主體地位,使學生在自主探索,積極思考,合作交流的過程中掌握知識,提高技能,這一主體思路下設計的。
以上是我對本節課的一些初淺的認識和想法,有不足之處,希望各位老師批評指導。
數學說課稿初中 篇5
寫說課稿一定要有正確的思路,下面一起去看看小編為你整理的初中數學萬能說課稿吧,希望對大家有幫助!
一、說教材
用因式分解法求解一元二次方程是北師大版九年級上冊第二章第四節內容,是中學數學的主要內容之一,在初中數學中占有重要地位。我們從知識的發展來看,學生通過一元二次方程的學習,可以對已學過實數、一元一次方程、整式、二次根式等知識加以鞏固,同時一元二次方程又是今后學習可化為一元二次方程的分式方程、二次函數等知識打下良好基礎。
二、說學情
任何一個教學過程都是以傳授知識、培養能力和激發興趣為目的的。中學生有強烈的好奇心和求知欲,當他們在解決實際問題時,發現要解的方程不再是以前所學過的一元一次方程或是可化為一元一次方程的其他方程時,他們自然會想進一步研究和探索解方程的配方法問題。而從學生的認知結構上來看,前面我們已經系統的研究了完全平方公式,二次根式,用配方法公式法后,這就為我們繼續研究用因式分解法解一元二次方程奠定了基礎。
三、說教學目標
【知識與技能】
掌握應用因式分解的方法,會正確求一元二次方程的解。
【過程與方法】
通過利用因式分解法將一元二次方程轉化成兩個一元一次方程的過程,體會“等價轉化”“降次”的數學思想方法。
【情感態度與價值觀】
通過探討一元二次方程的.解法,體會“降次”化歸的思想,逐步養成主動探究的精神與積極參與的意識。
四、說教學重難點
【重點】
運用因式分解法求解一元二次方程。
【難點】
發現與理解分解因式的方法。
五、說教法、學法
本節課我主要采用啟發式、類比法、探究式的教學方法。教學中力求體現“類比---探究-----歸納”的模式。有計劃的逐步展示知識的產生過程,滲透數學思想方法。由于學生配平方的能力有限,所以,本節課借助多媒體輔助教學,指導學生通過觀察與演示,總結因式分解規律,從而突破難點。
同時學生經過自主探索和合作交流的學習過程,產生積極的情感體驗,進而創造性地解決問題,有效發揮學生的思維能力,發揮學生的自覺性、活動性和創造性。
六、說教學過程
(一)導入新課
因為數學來源與生活,所以以學生的實際生活背景為素材創設情景,易于被學生接受、感知。通過課件演示課本中的實例,并應用多媒體對其進行分析,充分顯示多媒體演示中的生動性、靈活性,增強直觀性;同時幫助學生從實際問題中提煉出數學問題,初步培養學生的空間概念和抽象能力。由因式分解從而激發學生的求知欲望,順利地進入新課。
(二)探索新知
問題1:一個數的平方與這個數的3倍有可能相等嗎?如果相等,這個數是幾?你是怎樣求出來的?
學生小組討論,探究后,展示三種做法。
問題:小穎用的什么法?——公式法
小明的解法對嗎?為什么?——違背了等式的性質,x可能是零。
小亮的解法對嗎?其依據是什么——兩個數相乘,如果積等于零,那么這兩個數中至少有一個為零。
問題2:學生探討哪種方法對,哪種方法錯;錯的原因在哪?你會用哪種方法簡便]
師引導學生得出結論:
如果a·b=0,那么a=0或b=0
(如果兩個因式的積為零,則至少有一個因式為零,反之,如果兩個因式有一個等于零,它們的積也就等于零。)
“或”有下列三層含義
①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0
問題3:
(1)什么樣的一元二次方程可以用因式分解法來解?
(2)用因式分解法解一元二次方程,其關鍵是什么?
(3)用因式分解法解一元二次方程的理論依據是什么?
(4)用因式分解法解一元二方程,必須要先化成一般形式嗎?
因式分解法:當一元二次方程的一邊是0,而另一邊易于分解成兩個一次因式的乘積時,我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱為因式分解法。
這是我會提示學生:1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;2.關鍵是熟練掌握因式分解的知識;3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零。”
(三)鞏固提高
在這個環節,我遵循鞏固與發展相結合的原則,先引導學生練習,練習如下:
用分解因式法解下列方程嗎?
在學生做練習時,進行巡看,及時掌握學生的練習情況,以便進行有針對性的評講。個別題目采取小組合作的方式對本課知識進行鞏固,不僅調動學生學習的積極性、主動性,增強學生積極參與教學活動意識和集體榮譽感,而且還能培養學生的觀察能力和判斷能力。學生完成課本練習后,補充一道習題,目的是提升學生對因式分解法的理解。同時也起到了分層次教學的作用。
(四)小結作業
最后是小結環節,通過本節課的學習你學到了什么,有什么收獲。整個過程讓學生自己進行,以培養學生的歸納、概括的能力。考慮帶學生在知識、技能、能力等方面的發展都不盡相同,因此,我分層次布置作業,作業分為必做、選做兩類,以便同時兼顧到學有困難和學有余力的學生。
七、說板書設計
我的板書本著清晰、簡潔、直觀的原則,呈現知識的內在聯系,板書如下:
數學說課稿初中 篇6
各位評委:
下午好!今天我說課的題目是《分式的乘除法(第1課時)》,選用是人教版的教材。根據新課標的理念,對于這節課,我將以教什么,怎樣教,為什么這樣教為思路,從說教材、說學情、說教法學法、說教學過程、說板書等五個方面加以說明。
一、 說教材
(一)教材的地位和作用
本節教材是八年級數學第十六章第二節第一課時的內容,是初中數學的重要內容之一。一方面,這是在學習了分式基本性質、分式的約分和因式分解的基礎上,進一步學習分式的乘除法;另一方面,又為學習分式加減法和分式方程等知識奠定了基礎。因此,這節課在整個的初中數學的學習中起著承上啟下的過渡作用。
(二)教學目標分析
根據新課標的要求和這節課內容特點,考慮到年級學生的知識水平,以及對教材的地位與作用的分析,我制定了如下三維教學目標:
1.認知目標:理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關的實際問題。
2.技能目標:經歷從分數的乘除法運算到分式的乘除法運算的過程,培養學生類比的探究能力,加深對從特殊到一般數學的思想認識。
3.情感目標:教學中讓學生在主動探究,合作交流中滲透類比轉化的思想,使學生在學知識的同時感受探索的樂趣和成功的體驗。
(三)教學重難點
本著課程標準,在充分理解教材的基礎上,我確立了以下的教學重點、難點:
教學重點:運用分式的乘除法法則進行運算。
教學難點:分子、分母為多項式的分式乘除運算。
下面,為了講清重點難點,使學生能達到這節課的教學目標,我再從教法和學法上談談:
二、說學情
1.學生已經學習分式基本性質、分式的約分和因式分解,通過與分數的乘除法類比,促進知識的正遷移。
2.八年級的學生接受能力、思維能力、自我控制能力都有很大變化和提高,自學能力較強,通過類比學習加快知識的學習。
三、說教法學法
(一)說教法
教學方式的改變是新課標改革的目標,新課標要求把過去單純的老師講,學生接受的教學方式,變為師生互動式教學。師生互動式教學以教學大綱為依據,滲透新的教育理念,遵循教師主導、學生為主體的原則,結合這節課的內容特點和學生的年齡特征,這節課我采用啟發式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,倡導學生主動參與教學實踐活動,以師生互動的形式,在教師的指導下突破難點:分式的乘除法運算,在例題的引導分析時,教學中應予以簡單明白,深入淺出的分析本課教學難點:分子、分母為多項式的分式乘除運算。讓學生在練習題中鞏固難點,從真正意義上完成對知識的自我建構。
另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發學生的學習興趣,增大教學容量,提高教學效率。
(二)說學法
從認知狀況來說,學生在此之前對分數乘除法運算比較熟悉,加上對本章第一節分式及其性質學習,抓住初中生具有豐富的想象能力和活躍的思維能力,愛發表見解,希望得到老師的表揚這些心理特征,因此,我認為這節課適合采用學生自主探索、合作交流的數學學習方式。一方面運用實際生活中的問題引入,激發學生的興趣,使他們在課堂上集中注意力;另一方面,由于分式的乘除法法則與分數的乘除法法則類似,以類比的方法得出分式的乘除法則,易于學生理解、接受,讓學生在自主探索、合作交流中加深理解分式的乘除運算,充分發揮學生學習的主動性。不但讓學生"學會"還要讓學生"會學"
四、說教學過程
新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的'過程。為有序、有效地進行教學,接下來,我再具體談談這節課的教學過程安排:
(一)提出問題,引入課題
俗話說:"好的開端是成功的一半"同樣,好的引入能激發學生興趣和求知欲。因此我用實際出發提出現實生活中的問題:
問題1求容積的高是 ,(引出分式乘法的學習需要)。
問題2求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學習需要)。
從實際出發,引出分式的乘除的實在存在意義,讓學生感知學習分式的乘法和除法的實際需要,從而激發學生興趣和求知欲。
(二)類比聯想,探究新知
從學生熟悉的分數的乘除法出發,引發學生的學習興趣。
解后總結概括:
(1)式是什么運算?依據是什么?
(2)式又是什么運算?依據是什么?能說出具體內容嗎?(如果有困難教師應給于引導)
(學生應該能說出依據的是:分數的乘法和除法法則)教師加以肯定,并指出與分數的乘除法法則類似,引導學生類比分數的乘除法則,猜想出分式的乘除法則。
【分式的乘除法法則 】
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則:分式除以分式, 把除式的分子、分母顛倒位置后,與被除式相乘。
用式子表示為:
設計意圖:由于分式的乘除法法則與分數的乘除法法則類似,故以類比的方法得出分式的乘除法則,易于學生理解、接受,體現了自主探索,合作學習的新理念。
(三)例題分析,應用新知
師生活動:教師參與并指導,學生獨立思考,并嘗試完成例題。
P11的例1,在例題分析過程中,為了突出重點,應多次回顧分式的乘除法法則,使學生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破這節課的難點我采取板演的形式,和學生一起詳細分析,提醒學生關注易錯易漏的環節,學會解題的方法。
(四)練習鞏固,培養能力
P13練習第2題的(1)(3)(4)與第3題的(2)
師生活動:教師 出示問題,學生獨立思考解答,并讓學生板演或投影展示學生的解題過程。
通過這一環節,主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發展相結合的原則。讓學生板演,一是為了暴露問題,二是為了規范解題格式和結果。
(五)課堂小結,回扣目標
引導學生自主進行課堂小結:
1.這節課我們學習了哪些知識?
2.在知識應用過程中需要注意什么?
3.你有什么收獲呢?
師生活動:學生反思,提出疑問,集體交流。
設計意圖:學習結果讓學生作為反饋,讓他們體驗到學習數學的快樂,在交流中與全班同學分享,從而加深對知識的理解記憶。
(六)布置作業
教科書習題6.2 第1、2(必做) 練習冊P (選做),我設計了必做題和選做題,必做題是對這節課內容的一個反饋,選做題是對這節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。
五、說板書設計
在這節課中我將采用提綱式的板書設計,因為提綱式-條理清楚、從屬關系分明,給人以清晰完整的印象,便于學生對教材內容和知識體系的理解和記憶。
數學說課稿初中 篇7
一、設計思想:
數學來源于生活,數學教學應走進生活,生活也應走進數學,數學與生活
的結合,會使問題變得具體、生動,學生就會產生親近感、探究欲,從而誘發內在學習潛能,主動動手、動口、動腦。因此,在教學中,我們應自覺地把生活作為課堂,讓數學回歸生活,服務生活。培養學生的動手能力和創新能力,豐富和發展學生的數學活動經歷,并使學生充分體會到數學之趣、數學之用、數學之美。處理好教與學的關系。教師既要做到精講精練,又要敢于放手引導學生參與嘗試和討論,展開思維活動。根據新教材留給學生一定的思維空間的特點,教師要鼓勵學生自己動腦參與探索,讓學生有發表意見的機會,絕對不能包辦代替,使學生不僅能學會,而且能會學。充分發揮網絡在課堂教學中的優勢,力爭促進學生學習方式的.轉變,由被動聽講式學習轉變為積極主動的探索發現式學習。數學問題生活化,主導主體相結合,發揮媒體技術優勢,探究練習相結合,符合《課標》精神。
網絡環境下代數課的教學模式:設置情境-提出問題-自主探究-合作交流-反思評價-鞏固練習-總結提高
二、背景分析:
(一)學情分析:內容是義務教育課程標準實驗教科書(人民教育出版社)數學八年級下冊第十六章:《分式》
學生是本校初二實驗班的學生,參加北師大“基礎教育跨越式發展”課題實驗一年半,學生基礎知識較扎實,具有一定探索解決問題的能力,電腦使用水平較熟練,對于網絡環境下的學習模式已適應。
本節課實施網絡環境下教學,采用自學導讀式教學模式。學生喜歡上網絡數學課,學習數學的興趣較濃。
(二)內容分析:本節內容是在學生掌握了一元一次方程的解法和分式四則運算的基礎上進
行的,為后面學習可化為一元二次方程的分式方程打下基礎。通過經歷實際問題→列分式方程→探究解分式方程的過程,體會分式方程是一種有效描述現實世界的模型,發展學生分析問題解決問題的能力,培養應用意識,滲透類比轉化思想。
(三)教學方式:自學導讀—同伴互助—精講精練
(四)教學媒體:Midea---Class純軟多媒體教學網幾何畫板
三、教學目標:
知識技能:了解分式方程定義,理解解分式方程的一般解法和分式方程可能產生增根的原因,掌握解分式方程驗根的方法。
過程方法:通過經歷實際問題→列分式方程→探究解分式方程的過程,體會分式方程是一種有效描述現實世界的模型,發展學生分析問題解決問題的能力,培養應用意識,滲透轉化思想。
情感態度:強化用數學的意識,增進同學之間的配合,體驗在數學活動中運用知識解決問題的成功體驗,樹立學好數學的自信心。
數學說課稿初中 篇8
今天我說課的內容是八年級數學下冊《分式方程》的第二課時,我將從以下幾方面進行介紹。
一 教材的地位和作用:
本節內容從以前所學過的分式方程的概念出發,介紹分式方程的求解方法。跟這部分內容有關聯的是后面列方程解應用題,學好這一節課,將為下節課的學習打下基礎。
二、教學目標
1.使學生理解分式方程的意義。
2.使學生掌握可化為一元一次方程的分式方程的一般解法。
3.了解解分式方程時可能產生增根的原因,并掌握解分式方程的驗根方法。
4.在學生掌握了分式方程的一般解法和分式方程驗根方法的基礎上,使學生進一步掌握可化為一元一次方程的分式方程的解法,使學生熟練掌握解分式方程的技巧。
5.通過學習分式方程的解法,使學生理解解分式方程的基本思想是把分式方程轉化成整式方程,把未知問題轉化成已知問題,從而滲透數學的轉化思想。
三、重、難點的分析
本節重點是可化為一元一次方程的分式方程求解中的轉化。解分式方程的基本思想是:設法去掉分式方程的分母,把分式方程轉化為整式方程,這是分式方程求解的關鍵,因此轉化過程中主要是找方程兩邊的最簡公分母。難點分析:解分式方程學生容易出錯,關鍵不能理解在方程變形的過程中產生增根的原因,對于八年級學生理解有一定的困難,可以結合實例讓學生了解方程兩邊同乘的是整式,整式可能為零不能滿足方程同解變換的原則,因此求解分式方程一定要驗根。
四、教學方法:
本節內容從以前所學過的分式方程的概念出發,介紹分式方程的求解方法。再加上數學學科的特點,所以本節課采用了啟發式、引導式教學方法。特別注重"精講多練",真正體現以學生為主體。上新課時采用了啟發、引導式的同時,針對學生的回答所出現的一些問題給出及時的糾正,在上課做練習時,除了讓盡可能多的學生上黑板以外,自己還在下面及時的發現學生所出現的問題,比較典型的則全班講評,個別小問題,個別解決。
五、教學過程
(一)復習:
(1) 什么叫分式方程?
設計意圖:主要讓學生繼續區分整式方程與分式方程的區別,為新授做鋪墊,使學生能積極投入到下面環節的學習。
(二)新授:
(1)學生學習例題交流討論,找兩組同學到黑板上嘗試解題。
設計意圖:通過學生對例題的合作研究,使每個學生對分式方程的解法有一個初步的認識,在此環節,鼓勵同學大膽交流、發表自己的見解,同時學會聆聽。培養同學們的合作意識。教師在此時對學生的問題要做出適當的評價,給同學以鼓勵和引導。
(2)講解例題:7/x-2=5/x
解:方程兩邊同乘x(x-2),約去分母,得
5(x-2)=7x解這個整式方程,得
x=5.
檢驗:把x=-5代入最簡公分母
x(x-2)=35≠0,
∴x=-5是原方程的解。
設計意圖;在此環節,教師鼓勵同學們親自體驗,激發學生的學習熱情。在鞏固解分式方程的基礎上發展學生的歸納能力、張揚學生的個性。使教師真正成為學生學習的.促進者。
(3)議一議
在解方程1-x/x-2 = -1/x-2 - 2時,小亮的解法如下:
方程兩邊都乘以X -2,得
1 - X = -1 -2(X -2)
解這個方程,得
X = 2
你認為X = 2是原方程的根嗎?與同伴交流。
教師小結:
在方程變形時,有時可能產生不適合原方程的根,這種根叫做原方程的增根
驗根的方法有:代入原方程檢驗法和代入最簡公分母檢驗法。 (1)代入原方程檢驗,看方程左,右兩邊的值是否相等,如果值相等,則未知數的值是原方程的解,否則就是原方程的增根。 (2)代入最簡公分母檢驗時,看最簡公分母的值是否為零,若值為零,則未知數的值是原方程的增根,否則就是原方程的根。
前一種方法雖然計算量大,但能檢查解方程的過程中有無計算錯誤,后一種方法,雖然計算簡單,但不能檢查解方程的過程中有無計算錯誤,所以在使用后一種檢驗方法時,應以解方程的過程沒有錯誤為前提。
想一想:解分式方程一般需要經過哪幾個步驟?由學生回答。
(4)教師歸納小結:
解分式方程的步驟:
1 .在方程的兩邊都乘以最簡公分母,約去分母,化為整式方程
2.解這個整式方程
3.把整式方程的根代入最簡公分母,看結果是不是零,使最簡公分母為零的根是原方程的增根,必須舍去。
(5)輕松完成:課堂練習:29頁1練習
(6)歸納總結、整理反思
學生自己總結本節課的收獲。教師引導學生不但總結知識上的收獲,也要總結合作交流上,反思整堂課的學習體驗。
設計目的:引導學生從多角度對本節課歸納總結,感悟知識上的點滴收獲,體驗合作交流的快樂,反思自己。
(7)課后作業:32頁習題16.3的1大題的8個小題
教學設計說明:
整個教學活動,從學生的實際出發,引導學生通過探索、交流等手段,獲得知識,形成技能,發展思維。在教學活動中,我積極地充當教學活動的組織者、引導者、合作者。讓學生產生一種渴望學習的沖動,自愿地全身心地投入學習過程,自主學習、自悟學習、自得學習,讓學生在言詞實踐活動中真正"動"起來。變"聽"數學為"做"數學。使學生的個性在課堂中得到張揚、能力得到發展。最終實現以下理念追求:人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展。
【數學說課稿初中】相關文章:
初中數學說課稿精選07-14
初中數學《數軸》說課稿11-23
數學說課稿初中06-07
初中的數學說課稿07-03
初中數學說課稿03-11
初中數學優秀說課稿05-20
初中數學說課稿《垂線》06-08
初中數學優秀說課稿[優秀]04-23
初中數學說課稿范文08-18
人教版初中數學說課稿06-13