《一元二次方程》全章教案(通用15篇)
作為一名教學工作者,總歸要編寫教案,教案是教材及大綱與課堂教學的紐帶和橋梁。那要怎么寫好教案呢?以下是小編為大家整理的《一元二次方程》全章教案,歡迎閱讀,希望大家能夠喜歡。

《一元二次方程》全章教案 1
學習目標
1、一元二次方程的求根公式的推導
2、會用求根公式解一元二次方程
3、通過運用公式法解一元二次方程的訓練,提高學生的運算能力,養成良好的運算習慣
學習重、難點
重點:
一元二次方程的求根公式
難點:
求根公式的條件:b2 -4ac≥0
學習過程:
一、自學質疑:
1、用配方法解方程:2x2-7x+3=0
2、用配方解一元二次方程的步驟是什么?
3、用配方法解一元二次方程,計算比較麻煩,能否研究出一種更好的方法,迅速求得一元二次方程的實數根呢?
二、交流展示:
剛才我們已經利用配方法求解了一元二次方程,那你能否利用配方法的基本步驟解方程ax2+bx+c=0(a≠0)呢?
三、互動探究:
一般地,對于一元二次方程ax2+bx+c=0
(a≠0),當b2-4ac≥0時,它的根是
用求根公式解一元二次方程的`方法稱為公式法
由此我們可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系數a、b、c確定的。因此,在解一元二次方程時,先將方程化為一般形式,然后在b2-4ac≥0的前提條件下,把各項系數a、b、c的值代入,就可以求得方程的根。
注:(1)把方程化為一般形式后,在確定a、b、c時,需注意符號。
(2)在運用求根公式求解時,應先計算b2-4ac的值;當b2-4ac≥0時,可以用公式求出兩個不相等的實數解;當b2-4ac<0時,方程沒有實數解.就不必再代入公式計算了.
四、精講點撥:
例1、課本例題
總結:其一般步驟是:
(1)把方程化為一般形式,進而確定a、b,c的值(注意符號)
(2)求出b2-4ac的值.(先判別方程是否有根)
(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出 的值,最后寫出方程的根。
例2、解方程:
(1)2x2-7x+3=0 (2) x2-7x-1=0
(3) 2x2-9x+8=0 (4) 9x2+6x+1=0
五、糾正反饋:
做書上第P90練習。
六、遷移應用:
例3、一個直角三角形三邊的長為三個連續偶數,求這個三角形的三條邊長.
例4、求方程 的兩根之和以及兩根之積
《一元二次方程》全章教案 2
學習目標:
1、使學生會用列一元二次方程的方法解決有關增長率的應用題;
2、進一步培養學生分析問題、解決問題的能力。
學習重點:
會列一元二次方程解關于增長率問題的應用題。
學習難點:
如何分析題意,找出等量關系,列方程。
學習過程:
一、 復習提問:
列一元二次方程解應用題的一般步驟是什么?
二、探索新知
1.情境導入
問題:“坡耕地退耕還林還草”是國家為了解決西部地區水土流失生態問題、幫助廣大農民脫貧致富的一項戰略措施,某村村長為帶領全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范.2002年將自家的坡耕地全部退耕,并于當年承包了30畝耕地的還林還草及管理任務,而實際完成的畝數比承包數增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務,求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的畝數為準,國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?
2.合作探究、師生互動
教師引導學生分析關于環保的.情境導入問題,這是一個平均增長率問題,它的基數是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實際完成的畝數是30(1+x),第二次增長后,即2003年實際完成的畝數是30(1+x)2,而這一年村長完成的畝數正好是36.3畝
教師引導學生運用方程解決問題:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%.
②全村坡耕地還林還草為50×36.3=1 815(畝),國家將補助糧食1 815×500=907 500(斤)=90.75(萬斤)
三、例題學習
說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。
例、某產品原來每件是600元,由于連續兩次降價,現價為384元,如果兩降價的百分率相同,求每次降價百分之幾?
(小組合作交流教師點撥)
時間 基數 降價 降價后價錢
第一次 600 600x 600(1-x)
第二次 600(1-x) 600(1-x)x 600(1-x)2
(由學生寫出解答過程)
四、鞏固練習
一商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?
五、課堂總結:
1、善于將實際問題轉化為數學問題,嚴格審題,弄清各數據間相互關系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習:
1、某商品計劃經過兩個月的時間將售價提高20%,設每月平均增長率為x,則列出的方程為()
A、x+(1+x)x=20% B、(1+x)2=20%
C、(1+x)2=1.2 D、(1+x%)2=1+20%
2、某工廠計劃兩年內降低成本36%,則平均每年降低成本的百分率是()
3、某種藥劑原售價為4元,經過兩次降價,現在每瓶售價為2.56元,問平均每次降低百分之幾?
《一元二次方程》全章教案 3
教學目標:
知識與技能目標:
經歷探索一元二次方程概念的過程,理解一元二次方程中的二次項、一次項、常數項;了解一元二次方程的一般形式,并會將一元二次方程轉化成一般形式。
過程與方法目標:
經歷抽象一元二次方程的概念的過程,進一步體會方程是刻畫現實世界的一個有效數學模型;在探索過程中培養和發展學生學習數學的主動性,提高數學的應用能力。
情感態度與價值觀目標:
培養學生主動參與、合作交流的意識;經歷獨立克服困難和運用知識解決問題的成功體驗,提高學生學習數學的信心。
教學重點:
理解一元二次方程的概念及其形式。
教學難點:
一元二次方程概念的探索
教學過程
一、情境引入
今天我們學習一元二次方程,溫故而知新,我們都學過什么方程?(一元一次方程,分式方程,方程組)同桌兩人說說學過這些方程的定義都是什么。你覺得學過這些方程難嗎?只要你拿出你的學習熱情來,就會感覺這節課的內容,也很簡單。請你打開課本39頁,從39頁到40頁議一議以上的內容,希望你準確而又迅速的在課本上列出方程,不用求解。列出方程后組內對一下答案,如有錯誤,出錯的原因。
二、探索新知
列方程正確率百分之百的請舉手。祝賀你們,沒舉手的同學加油!(列對的同學多就問,否則問現在會列這些方程的'請舉手)
請你將上述三個方程,化簡成等號右邊等于0的形式。完成后組內對一下答案,先完成的小組把你們的成果寫在黑板上,其余組跟黑板上的答案對一下,有不同意見的把你們組的答案也寫上去。(黑板上的答案對嗎?如有沒約分的,問哪個更好?)
觀察、思考剛才這3個方程2x2-13x+11=0,x2-8x-20=0,x2+12x-15=0,以及又加入的這兩個方程x2+3x=0,4x2-5=0是一元一次方程嗎?你猜這些方程叫什么方程?對,這樣的方程就是我們今天學習的一元二次方程。
請大家先思考然后小組討論導學案中探究一中的問題2到6,組長找好本題發言人,最后全班交流你們組對問題5和6的看法。
2、以上方程與一元一次方程有什么相同與不同之處?
3、你能說說什么樣的方程是一元二次方程嗎?
4、如果我們借助字母系數來表示,那么以上方程能都化成一個方程--------------------------,用字母表示系數時,要注意什么嗎?
5、你們組歸納的一元二次方程的概念與課本40頁的定義有區別嗎?誰的更好?好在哪?
6、你認為一元二次方程的概念中重點要強調的是什么?為什么?
請3組同學交流一下你們討論的問題5、6的結果。老師根據學生的回答,有針對性的提出為什么這樣想?你的理由是什么?以強調a≠0。并板書(1)含一個未知數(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、為常數a≠0)有沒有要補充或者要發表不同看法的小組?
請你搶答問題7。
7、判斷下列方程是不是一元二次方程,若不是請說明理由。
同桌兩人能舉出幾個一元二次方程的例子嗎?
探索二
先自學課本40最后一段話,然后同桌兩人說出黑板上3個方程的二次項、二次項系數、一次項、一次項系數、常數項。
找一元二次方程各項及其各項系數時,需要注意什么嗎?(先要是一般形式,系數帶符號)請你完成探究二中問題1,請2組、4組選派一名同學分別上黑板(10、(2)兩題。完成后對照課本41頁例1自己檢查對錯,有困難的同學找組長和我。
1、判斷下列方程是不是關于x的一元二次方程,如果是,寫出它的二次項系數、一次項系數和常數項。
(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)
問題3做對了的同學請舉手?祝賀你們。出錯的同學能不能把你的寶貴經驗告訴我們,我們下次也好注意一下,別再出錯?請你說說,謝謝你對我們的提醒。
三、鞏固練習
請看問題2,
2、已知關于x的方程(1)k為何值時,此方程為一元二次方程?(2)k為何值時,此方程為一元一次方程?誰能回答?為什么這樣想?
四、課堂:
先小組內說出本節課你的收獲,然后全班交流你們組的收獲。大家看看哪個小組的收獲多。
五、自我檢測:
看看我們的收獲是不是真的
碩果累累,請你完成自我檢測給你5分鐘時間,做完的給我和組長檢查。老師和小組長當堂批改
1、三個連續整數兩兩相乘,所得積的和為242,這三個數分別是多少?
根據題意,列出方程為------------------------------------。
2、把下列方程化為一元二次方程的形式,并寫出它的二次項系數、常數項:
方程
一般形式
二次項系數
常數項
3x2=5x-1
(x+2)(x-1)=6
3、關于x的方程(k-2)x2+2(k+9)x+2k-1=0
(1)k為何值時,是一元二次方程?k--------------是一元二次方程。
(2)k為何值時,是一元一次方程?k-------------是一元一次方程。
六、小組
請小組長本小組今天大家的表現。
七、作業
課本42頁1(2),2(1)(2)(3)
能力挑戰:
已知關于x的方程(k2-1)x2+(k+1)x-2=0
(1)k為何值時,此方程為一元二次方程?并寫出該一元二次方程的二次項系數、一次項系數、常數項。
(2)k為何值時,此方程為一元一次方程?
板書設計:一元二次方程
(1)3x(x+2)=4(x-1)+7
(2)(2x+3)2=(x+1)(4x-1)
2x2-13x+11=0(1)含一個未知數(2)2次
x2-8x-20=0(3)整式方程
x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、為常數a≠0)
《一元二次方程》全章教案 4
一、教學目標
知識與技能
(1)理解一元二次方程的意義。
(2)能熟練地把一元二次方程整理成一般形式并能指出它的二次項系數,一次項系數及常數項。
過程與方法
在分析、揭示實際問題的數量關系并把實際問題轉化成數學模型(一元二次方程)的過程中,使學生感受方程是刻畫現實世界數量關系的工具,增加對一元二次方程的感性認識。
情感、態度與價值觀
通過探索建立一元二次方程模型的過程,使學生積極參與數學學習活動,增進對方程的認識,發展分析問題、解決問題的能力。
二、教材分析:教學重點難點
重點:經歷建立一元二次方程模型的過程,掌握一元二次方程的一般形式。
難點:準確理解一元二次方程的意義。
三、教學方法
創設情境——主體探究——合作交流——應用提高
四、學案
(1)預學檢測
3x-5=0是什么方程?一元一次方程的定義是怎樣的?其一般形式是怎樣的?
五、教學過程
(一)創設情境、導入新
(1)自學本P2—P3并完成書本
(2)請學生分別回答書本內容再
(二)主體探究、合作交流
(1)觀察下列方程:
(35-2x)2=900 4x2-9=0 3y2-5y=7
它們有什么共同點?它們分別含有幾個未知數?它們的左邊分別是未知數的幾次幾項式?
(2)一元二次方程的概念與一般形式?
如果一個方程通過移項可以使右邊為0,而左邊是只含一個未知數的二次多項式,那么這樣的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知數 a≠0),其中,a、b、c分別稱為二次項系數、一次項系數和常數項,如x2-x=56
(三)應用遷移、鞏固提高
例1:根據一元二次方程定義,判斷下列方程是否為一元二次方程?為什么?
x2-x=1 3x(x-1)=5(x+2) x2=(x-1)2
例2:將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數、一次項系數和常數項。
解:去括號得
3x2-3x=5x+10
移項,合并同類項,得一元二次方程的一般形式
3x2-8x-10=0
其中二次項系數為3,一次項系數為-8,常數項為-10.
學生練習:書本P4練習
(四)總結反思 拓展升華
總結
1、一元二次方程的定義是怎樣的?
2、一元二次方程的一般形式為ax2+bx+c=0(a≠0),一元二次方程的項及系數都是根據一般式定義的,這與多項式中的項、次數及其系數的定義是一致的.。
3、在實際問題轉化為一元二次方程數學模型的過程中,體會學習一元二次方程的必要性和重要性。
反思
方程ax3+bx2+cx+d=0是關于x的一元二次方程的條是a=0且b≠0,是一元一次方程的條是a=b=0 且c≠0.
(五)布置作業
(1)必做題P4 習題1.1A組 1.2
(2)選做題: 若xm-2=9是關于x的一元二次方程,試求代數式(m2-5m+6)÷(m2-2m)的值。
《一元二次方程》全章教案 5
教學內容
一元二次方程概念及一元二次方程一般式及有關概念
教學目標
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應用一元二次方程概念解決一些簡單題目
1.通過設置問題,建立數學模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關概念.
3.解決一些概念性的題目.
4.態度、情感、價值觀
5.通過生活學習數學,并用數學解決生活中的問題來激發學生的學習熱情
重難點關鍵
1.重點:
一元二次方程的概念及其一般形式和一元二次方程的有關概念并用這些概念解決問題.
2.難點關鍵:
通過提出問題,建立一元二次方程的數學模型,再由一元一次方程的概念遷移到一元二次方程的概念
教學過程
一、復習引入
學生活動:列方程
問題(1)《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?
如果假設門的高為x尺,那么,這個門的寬為_______尺,根據題意,得________
整理、化簡,得:__________
問題(2)如圖,如果 ,那么點C叫做線段AB的黃金分割點
如果假設剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據題意,得:_______
整理,得:________
老師點評并分析如何建立一元二次方程的數學模型,并整理
二、探索新知
學生活動:請口答下面問題
(1)上面三個方程整理后含有幾個未知數?
(2)按照整式中的多項式的規定,它們最高次數是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師 點評:
(1)都只含一個未知數x;
(2)它們的最高次數都是2次的;
(3)都有等號,是方程.
因此,像這樣的'方程兩邊都是整式,只含有一個未知數(一元),并且未知數的最高次數是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關于x的一元二次方程,經過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數、一次項系數及常數項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.
解:去括號,得:
40-16x-10x+4x2=18
移項,得:4x2-26x+22=0
其中二次項系數為4,一次項系數為-26,常數項為22.
例2.(學生活動:請二至三位同學上臺演練) 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數;一次項、一次項系數;常數項.
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括號,得:
x2+2x+1+x2-4=1
移項,合并得:2x2+2x-4=0
其中:二次項2x2,二次項系數2;一次項2x,一次項系數2;常數項-4.
三、鞏固練習
教材P32 練習1、2
四、應用拓展
例3.求證:關于x的方程(2-8+17)x2+2x+1=0,不論取何值,該方程都是一元二次方程.
分析:要證明不論取何值,該方程都是一元二次方程,只要證明2-8+17≠0即可.
證明:2-8+17=(-4)2+1
∵(-4)2≥0
∴(-4)2+1>0,即(-4)2+1≠0
∴不論取何值,該方程都是一元二次方程.
五、歸納小結(學生總結,老師點評)
本節課要掌握:
(1)一元二次方程的概念;
(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數,一次項、一次項系數,常數項的概念及其它們的運用.
《一元二次方程》全章教案 6
一、復習目標:
1、能說出一元二次方程及其相關概念,;
2、能熟練應用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉化等數學思想。
3、能靈活應用一元二次方程的知識解決相關問題,能根據具體問題的實際意義檢驗結果的'合理性,進一步培養學生分析問題、解決問題的意識和能力。
二、復習重難點:
重點:一元二次方程的解法和應用.
難點:應用一元二次方程解決實際問題的方法.
三、知識回顧:
1、一元二次方程的定義:
2、一元二次方程的常用解法有:配方法的一般過程是怎樣的?
3、一元二次方程在生活中有哪些應用?請舉例說明。
4、利用方程解決實際問題的關鍵是在解決實際問題的過程中,怎樣判斷求得的結果是否合理?請舉例說明。
四、例題解析:
例1、填空
1、當m時,關于x的方程(m-1)+5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,當m時,是一元二次方程;當m時,是一元一次方程.
3、將一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.
4、用配方法解方程x2+8x+9=0時,應將方程變形為()
A、(x+4)2=7B、(x+4)2=-9
C、x+4)2=25D、(x+4)2=-7
學習內容學習隨記
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(選擇適當的方法解)
例3.1、新竹文具店以16元/支的價格購進一批鋼筆,根據市場調查,如果以20元/支的價格銷售,每月可以售出200支;而這種鋼筆的售價每上漲1元就少賣10支.現在商店店主希望銷售該種鋼筆月利潤為1350元,則該種鋼筆該如何漲價?此時店主該進貨多少?
2、如圖,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,點P、Q同時由A、B兩點出發分別沿AC,BC方向向點C勻速運動,它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半?
《一元二次方程》全章教案 7
教學目標
知識與技能目標
1、構建本章的部分知識框圖。
2、復習一元二次方程的概念、解法。
過程與方法
1、通過對本章方程解法的復習,進一步提高學生的運算能力。
2、在解一元二次方程的過程中體會轉化等數學思想。
情感、態度與價值觀
通過師生共同的活動,使學生在交流和反思的過程中建立本章的知識體系,從而體驗學習數學的成就感.
教學重點
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
教學難點
解法的靈活選擇;例4和例5的'解法。
教學過程
一、創設情境
導入新課
問題:本章中,我們有哪些收獲?(教師點撥引導學生構建本章部分知識框圖)
二、師生互動
共同探究
1、復習概念
例1
例2
2、四種解法
(1)
解法及其關系
(2)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
(4)方法優選
3、方法補充
例4
4、解法糾錯
例5
解關于x的方程
錯誤解法
正確解法
三、小結反思
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
四、布置作業
鞏固提高
《一元二次方程》全章教案 8
【教材分析】
一元二次方程是中學數學的主要內容之一,在初中數學中占有重要地位。通過一元二次方程的學習,可以對已學過實數、一元一次方程、因式分解、二次根式等知識加以鞏固,同時又是今后學習可化為一元二次方程的其它高元方程、一元二次不等式、二次函數等知識的基礎。此外,學習一元二次方程對其它學科有重要意義。本節課是一元二次方程的概念,是通過豐富的實例,讓學生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。
【教學目標】
1、理解一元二次方程的概念,能熟練地把一元二次方程整理成一般形式(≠0)并知道各項及其系數。
2、在分析、揭示實際問題的數量關系并把實際問題轉化為數學模型(一元二次方程)的過程中使學生感受方程是刻畫現實世界數量關系的工具,增加對一元二次方程的進一步認識。
【教學重點與難點】
理解一元二次方程的概念及一般形式,會正確識別一般式中的“項”及“系數”。
【教法、學法】
因為學生已經學習了一元一次方程及相關概念,所以本節課我主要采用啟發式、類比法教學。教學中力求體現“問題情景---數學模型-----概念歸納”的模式。本節課借助多媒體輔助教學,指導學生從具體的問題情景中抽象出數學問題,建立數學方程,從而突破難點。同時學生在現實的生活情景中,經歷數學建模,經過自主探索和合作交流的學習過程,產生積極的情感體驗,進而創造性地解決問題,有效發揮學生的思維能力。
【教學過程】
一、復習舊知,類比新知
1、一元一次方程的概念
像這樣的等號兩邊都是整式,只含有一個未知數(一元),并且未知數的次數是1(一次)的方程叫做一元一次方程
2、一般形式:
是常數且
設計意圖:復習一元一次方程,讓學生回憶起一元一次方程的概念,回憶起“項”及“系數”的概念,通過類比,讓學生能更好的理解一元二次方程的概念。
二、生活情境,自主學習
(1)正方形桌面的面積是2m,設正方形桌面的邊長是x m,可得方程
(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,
設花圃的寬是x m則花圃的長是m,
可得方程
(3)一張面積是600cm2的長方形紙片,把它的一邊剪短10cm,恰好得到一個正方形。設這個正方形的邊長是x cm,可得方程
(4)長5米的梯子斜靠在墻上,梯子的底端與墻的距離比梯子的頂端到地面的距離多1m,設梯子的底端到墻面的距離是x m,可得方程
設計意圖:因為數學來源與生活,所以以學生的實際生活背景為素材創設情景,易于被學生接受、感知。讓學生從實際問題中提煉出數學問題,初步培養學生的空間概念和抽象能力。情景分析中學生自然會想到用方程來解決問題,但所列的方程不是以前學過的,從而激發學生的求知欲望,順利地進入新課。
三、探究學習:
1、概念得出
討論交流:以上所列方程有哪些共同特征?
設計意圖:英國一位著名的`數學教育心理學家曾說:概念的教學要從大量實例出發,通過實例幫助完成定義,而不是教定義。讓學生充分感受所列方程的特點,再通過類比的方法得到定義,從而達到真正理解定義的目的
2、鞏固概念
下列方程中那些是一元二次方程。
設計意圖:
這組練習目的在于鞏固學生對一元二次方程定義中3個特征的理解.題目的設置,目的在于進一步加深學生對定義的掌握,提高學生對變式的理解能力.此環節采取搶答的形式,提高學生學習數學的興趣和積極性.
3、一元二次方程的一般形式:
設計意圖:此環節讓學生通過自主探究,類比一元一次方程一般形式,得出一元二次方程一般形式和項,系數的概念,從而達到真正理解并掌握的目的
4、典型例題
例將下列方程化為一元二次方程的一般形式,并分別指出它們的二次項系數、一次項系數和常數項
設計意圖:此題設置的目的在于加深學生對一般形式的理解。
5、鞏固練習
把下列方程化成一元二次方程的一般形式,并寫出它的二次項系數、一次項系數和常數項
設計意圖:此題設置的目的在于加深學生對一般形式的理解
6、拓展應用
(1)若是關于x的一元二次方程,則()
A、p為任意實數B、p=0 C、p≠0 D、p=0或1
(2)若關于x的方程mx
-2x+1=2x(x-1)是一元二次方程,那么m的取值范圍是
(3)、若方程是關于x的一元二次方程,則m的值為
設計意圖:此題讓學生進行思考,討論,讓學生進行講解,教師作適當歸納,可留疑,讓學生課下思考。此題需進行分類討論,開拓學生思維,體現數學的嚴謹性。
7.課堂小結
設計意圖:小結反思中,不同學生有不同的體會,要尊重學生的個體差異,激發學生主動參與意識,.為每個學生都創造了數學活動中獲得活動經驗的機會。
【課后作業】
1、下列方程中哪些是一元二次方程?試說明理由。
2、將下列方程化為一般形式,并分別指出它們的二次項系數、一次項系數和常數項:
《一元二次方程》全章教案 9
教學內容
根據面積與面積之間的關系建立一元二次方程的數學模型并解決這類問題
教學目標
掌握面積法建立一元二次方程的數學模型并運用它解決實際問題
利用提問的方法復習幾種特殊圖形的面積公式來引入新課,解決新課中的問題
重難點關鍵
1.重點:根據面積與面積之間的等量關系建立一元二元方程的數學模型并運用它解決實際問題
2.難點與關鍵:根據面積與面積之間的等量關系建立一元二次方程的數學模型
教學過程
一、復習引入
1.直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?
2.正方形的面積公式是什么呢?長方形的面積公式又是什么?
3.梯形的面積公式是什么?
4.菱形的面積公式是什么?
5.平行四邊形的面積公式是什么?
6.圓的面積公式是什么?
二、探索新
現在,我們根據剛才所復習的`面積公式來建立一些數學模型,解決一些實際問題.
例1、某林場計劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m
(1)渠道的上口寬與渠底寬各是多少?
(2)如果計劃每天挖土48m3,需要多少天才能把這條渠道挖完?
分析:因為渠深最小,為了便于計算,不妨設渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據梯形的面積公式便可建模
解:(1)設渠深為xm
則渠底為(x+0.4)m,上口寬為(x+2)m
依題意,得: (x+2+x+0.4)x=1.6
整理,得:5x2+6x-8=0
解得:x1= =0.8m,x2=-2(舍)
∴上口寬為2.8m,渠底為1.2m
(2) =25天
答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道
例2、如圖,要設計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應如何設計四周邊襯的寬度(精確到0.1cm)?
老師 點評:
依據題意知:中央矩形的長寬之比等于封面的長寬之比=9:7,由此可以判定:上下邊襯寬與左右邊襯寬之比為9:7,設上、下邊襯的寬均為9xcm,則左、右邊襯的寬均為7xcm,依題意,得:中央矩形的長為(27-18x)cm,寬為(21-14x)cm
《一元二次方程》全章教案 10
一元二次方程的概念
教材分析:
1.本節以生活中的實際問題為背景,引出一元二次方程的概念,讓學生掌握一元二次方程的特點,歸納出一元二次方程的一般形式,給出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本節內容是在前面所學方程、一元一次方程、整式、方程的解的基礎上進行學習,也是后面學習二次函數的一個基礎。
2.這些概念是全章后繼內容的基礎。
3.讓學生體會數學來源于生活,又服務于生活的基本思想。
學情分析:
1.授課班級學生基礎較差,學生成績參差不齊,差生較多。教學中應給予充分思考的時間,注意講練結合,以學生為本,體現生本課堂的理念。
2.該班級學生在平時訓練中已經形成了良好的合作精神和合作氣氛,可以充分發揮合作的優勢,從而充分調動學生主動性和積極性,使課堂氣氛活躍,讓學生在愉快的環境中學習。
3.作為該班的班主任,同時又擔任該班的數學教學,對學生學習情況有比較深入地了解,在解決具體問題的`時候可以兼顧不同能力的學生,充分調動學生的積極性,在練習題的設計上要針對學生的差異采取分層設計的方法,著重加強對學生的雙基訓練。
教學目標:
一、知識與技能:
1.理解一元二次方程的概念,能判斷一個方程是一元二次方程。
2.掌握一元二次方程的一般形式,正確認識二次項系數、一次項系數及常數項.
二、過程與方法:
1.引導學生分析實際問題中的數量關系,組織學生討論,讓學生類比、抽象出一元二次方程的概念。
2.培養獨立思考,合作交流學,分析問題,解決問題的能力。
三、情感態度與價值觀:
1.培養學生主動探究知識、自主學習和合作交流的意識.
2.激發學生學數學的興趣,體會學數學的快樂,培養用數學的意識.
3.讓學生體會數學來源于生活,又服務于生活的基本思想,從而意識到數學在生活中的作用。
教學重點:
一元二次方程的概念及一般形式,利用概念解決實際問題。
教學難點:
1.由實際問題向數學問題的轉化過程.
2.正確識別一般式中的“項”及“系數”.
3.一元二次方程的特點,如何判斷一個方程是一元二次方程。
教學過程:
一、創設情境,引入新課
1.問題1:廣安區為增加農民收入,需要調整農作物種植結構,計劃無公害蔬菜的產量比翻一番,要實現這一目標,和20無公害蔬菜產量的年平均增長率是多少?(通過放幻燈片引入)
設無公害蔬菜產量的年平均增長率為x,20的產量為a(a≠0),翻一番的意思就是a變為2a,那么
(1)用代數式表示20的產量;
(2)年蔬菜的產量比年增加了2x,對嗎?為什么?你能用代數式表示出來嗎?
學生思考交流得出方程a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通過幻燈片引入情境,提出問題:
問題2:廣安市政府在一塊寬200m、長320m的矩形廣場上,修筑寬相等的三條小路(兩條縱向、一條橫向,縱向與橫向垂直),把矩形空地分成大小一樣的6塊,建成小花壇,要使花壇的總面積為57000m2,問小路的寬應為多少?
設小路的寬為x m,則橫向小路的面積如何表示?縱向的呢?重疊部分的面積是多少?小路所占的面積用x的代數式如何表示?
這個問題的相等關系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
誰還能換一種思路考慮這個問題?
把6個小花壇拼起來是一個多長多寬的矩形,由此你會得出什么樣的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比較一下,哪種方法更巧妙?
3.通過幻燈片引入情景。問題3:廣安重百商場銷售某品牌服裝,若每件盈利50元,則每月可銷售100件。若每件降價1元,則每月可多賣出5件,若每月要盈利6000元,則商場決定每件服裝降價多少?
設每件降價x元,則現在的盈利為(50-x)元,降價后銷售量為(100+5x)件。可列方程為:(50-x)(100+5x)=6000
《一元二次方程》全章教案 11
教學目標
1.在現實情景中深刻理解等式的性質,并能正確運用等式的性質.
2.熟練掌握移項法則,利用移項法則解一元一次方程.
教學重、難點
重點:等式的基本性質,移項法則
難點:對等式性質的理解和用移項的法則解方程.
教學過程
一、激情引趣,導入新課
解方程:2x-5=3x+6
你能說出你解這個方程每一步的依據嗎?(一個加數等于和減去_______.)(導入新課:在小學我們學習了解方程,依據是加數與和的關系,因數與積的關系,還有沒有別的依據呢?)
二、合作交流,探究新知
1、等式的性質
問題1(一)班的學生人數等于(二)班的學生人數,現在每班增加2名學生,那么(一)班與(二)班的學生人數還相等嗎?如果每班減少了3名學生,那么兩個班的學生人數還相等嗎?
如果(-)班人數為a人,(二)班人數為b人,上面問題用含有a、b的式子怎樣表示?
問題2如果甲筐米的重量=乙筐米的重量,現在把甲、乙兩筐的米分別倒出一半,那么甲,乙兩筐剩下的米的重量相等嗎?
如果設甲筐米的重量為a,乙筐米的重量為b,上面問題用式子怎么表示?
從上面兩個問題,可以發現等式有什么性質?
等式的性質1等式兩邊都______(或者減去)_________(或同一個式子)所得結果仍是____.
等式的性質2等式兩邊都______(或者除以)_________(或同一個式子)(除數或者除式不能為0),所得結果仍是____.
你能用式子表達等式的性質嗎?
2、嘗試練習
做一做
(1)說一說下面等式變形的根據
①從x=y得到x+4=y+4,②從a=b得到a+10=b+10
③從2x=3x-6得到2x-3x=3x-6-3x④從3x=9得到x=3,⑤從得到x=8
用等式的性質解方程:4x+4=3x+12
歸納:(1)什么叫移項?把方程的某一項改變____后從方程的一邊移到另一邊叫______
看看下面的`變形是移項嗎?
2x+5-3x+6=9,解:2x-3x+5+6=9
練一練
用移項的方法解方程
12x=x+323x-1=40+2x
三、應用遷移,鞏固提高
1、實際應用
例1(我國古代數學問題)用繩子量井深,把繩子3折來量,井外余繩子4尺;把繩子4折來量,井外余繩子1尺,于是量井人說:“我知道這口井有多深了”。
你能算出這口井的深度嗎?(做完后交流討論)
2、游戲:請你任意圈出下面日歷中豎列上三個相鄰的數,求出它們的和并告訴我,我就知道你圈出的是哪三個數。
四、課堂練習,鞏固提高
1、如果單項式與是同類項,則n=___,m=____
2、如果代數式3x-5與1-2x的值互為相反數,那么x=____
3、若方程3x-5=4x+1與3m-5=4(m+x)-2m的解相同,求的值
P1091,2
五、反思小結,拓展提高
這一節你有什么收獲?
作業p118,1、2、3
《一元二次方程》全章教案 12
教學目標:
(1)理解一元二次方程的概念
(2)掌握一元二次方程的'一般形式,會判斷一元二次方程的二次項系數、一次項系數和常數項,數學教案-一元二次方程。
(2)會用因式分解法解一元二次方程
教學重點:
一元二次方程的概念、一元二次方程的一般形式
教學難點:
因式分解法解一元二次方程
教學過程:
(一)創設情景,引入新課
實際例子引入:列出的方程分別為X-7x+8=0,(X-7)(X+1)=89,X+8X-9=0
由學生說出這幾個方程的共同特征,從而引出一元二次方程的概念,初中數學教案《數學教案-一元二次方程》。
(二)新授
1:一元二次方程的概念。(一個未知數、最高次2次、等式兩邊都是整式)
練習
2:一元二次方程的一般形式(形如aX+bX+c=0)
任一個一元二次方程都可以轉化成一般形式,注意二次項系數不為零
3:講解例子
4:利用因式分解法解一元二次方程
5:講解例子
6:一般步驟
練習
(三)小結
(四)布置作業
板書設計
數學教案-一元二次方程
《一元二次方程》全章教案 13
一、教學目標
【知識與技能】
掌握應用因式分解的方法,會正確求一元二次方程的解。
【過程與方法】
通過利用因式分解法將一元二次方程轉化成兩個一元一次方程的過程,體會“等價轉化”“降次”的數學思想方法。
【情感態度價值觀】
通過探討一元二次方程的解法,體會“降次”化歸的思想,逐步養成主動探究的精神與積極參與的意識。
二、教學重難點
【教學重點】
運用因式分解法求解一元二次方程。
【教學難點】
發現與理解分解因式的方法。
三、教學過程
(一)導入新課
復習回顧:和學生一起回憶平方差、完全平方公式,以及因式分解的常用方法。
(二)探究新知
問題1:一個數的平方與這個數的3倍有可能相等嗎?如果相等,這個數是幾?你是怎樣求出來的?
學生小組討論,探究后,展示三種做法。
問題:小穎用的什么法?——公式法
小明的解法對嗎?為什么?——違背了等式的性質,x可能是零。
小亮的解法對嗎?其依據是什么——兩個數相乘,如果積等于零,那么這兩個數中至少有一個為零。
問題2:學生探討哪種方法對,哪種方法錯;錯的原因在哪?你會用哪種方法簡便]
師引導學生得出結論:
如果a·b=0,那么a=0或b=0
(如果兩個因式的積為零,則至少有一個因式為零,反之,如果兩個因式有一個等于零,它們的積也就等于零。)
“或”有下列三層含義
①a=0且b≠0②a≠0且b=0③a=0且b=0
問題3:
(1)什么樣的一元二次方程可以用因式分解法來解?
(2)用因式分解法解一元二次方程,其關鍵是什么?
(3)用因式分解法解一元二次方程的理論依據是什么?
(4)用因式分解法解一元二方程,必須要先化成一般形式嗎?
因式分解法:當一元二次方程的一邊是0,而另一邊易于分解成兩個一次因式的`乘積時,我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱為因式分解法。
老師提示:1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;2.關鍵是熟練掌握因式分解的知識;3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零。”
(三)鞏固提高
1.用分解因式法解下列方程嗎?
總結:右化零,左分解,兩因式,各求解。
(四)小結作業
用因式分解法求解一元二次方程的步驟:
1.方程化為一般形式;
2.方程左邊因式分解;
3.至少一個一次因式等于零得到兩個一元一次方程;
4.兩個一元一次方程的解就是原方程的解。
《一元二次方程》全章教案 14
教學目標:
1、經歷抽象一元二次方程概念的過程,進一步體會是刻畫現實世界的有效數學模型
2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能將一元二次方程轉化為一般形式,正確識別二次項系數、一次項系數及常數項。
教學重點
1、一元二次方程及其它有關的概念。
2、利用實際問題建立一元二次方程的數學模型。
教學難點
1、建立一元二次方程實際問題的數學模型.
2、把一元二次方程化為一般形式
教學方法:指導自學,自主探究
課時:第一課時
教學過程:
(學生通過導學提綱,了解本節課自己應該掌握的內容)
一、自主探索:(學生通過自學,經歷思考、討論、分析的過程,最終形成一元二次方程及其有關概念)
1、請認真完成課本P39—40議一議以上的內容;化簡上述三個方程.。
2、你發現上述三個方程有什么共同特點?
你能把這些特點用一個方程概括出來嗎?
3、請同學看課本40頁,理解記憶一元二次方程的概念及有關概念
你覺得理解這個概念要掌握哪幾個要點?你還掌握了什么?
二、學以致用:(通過練習,加深學生對一元二次方程及其有關概念的理解與把握)
1、下列哪些是一元二次方程?哪些不是?
①②③
④x2+2x-3=1+x2 ⑤ax2+bx+c=0
2、判斷下列方程是不是關于x的一元二次方程,如果是,寫出它的二次項系數、一次項系數和常數項。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)
3、若關于x的方程(k-3)x2+2x-1=0是一元二次方程,則k的值是多少?
4、關于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么條件下它是一元二次方程?在什么條件下它是一元一次方程?
5、以-2、3、0三個數作為一個一元二次方程的系數和常數項,請你寫出滿足條件的不同的一元二次方程?
三、反思:(學生,進一步加深本節課所學內容)
這節課你學到了什么?
四、自查自省:(通過當堂小測,及時發現問題,及時應對)
1、下列方程中是一元二次方程的有()A、1個B、2個 C、3個D、4個
(1)(2)(3)(4)(5)(6)2、將方程-5x2+1=6x化為一般形式為____________________.其二次項是_________,系數為_______,一次項系數為______,常數項為______。
3、關于x的方程(m2-4)x2+(m+2)x+2m+3=0,當m__________時,是一元二次方程;當m__________時,是一元一次方程.
作業:必做題:習題7.1
選做題:(挑戰自我)p41隨堂練習
1、已知關于的方程是一元二次方程,則為何值?
2、.當m為何值時,方程(m+1)x+1+27mx+5=0是關x于的一元二次方程?
3、關于的一元二次方程(m-1)x2+x+m2-1=0有一根為,則的值多少?
4、某校為了美化校園,準備在一塊長32米,寬20米的長方形場地上修筑若干條道路,余下部分作草坪,并請全校同學參與設計,現在有兩位學生各設計了一種(如圖),根據兩種設計各列出方程,求圖中道路的寬分別是多少,使圖(1),(2)的草坪面積為540米2.?
(1)(2)
板書設計:一元二次方程
定義:一個未知數整式方程可以化為
一般形式ax2+bx+c=0(a、b、c為常數,a≠0)
二次項一次項常數項
系數為a系數為b
教學反思
這次我參加了區里組織的優質
課比賽,這次的優質課采用市里要求的1/3模式,這對于我們來說具有一定的挑戰性。所謂“1/3模式”,就是把課堂教學時間大致分為3個部分,1/3的時間個人自主學習,1/3的時間小組合作學習,1/3的時間全班交流討論。在1/3模式中,整個教學過程由教師和學生共同參與,每個環節1/3的時間只是大致的劃分,可根據學習內容靈活安排。這就對教師提出了較高的要求。
首先要準備好學案。學案就是學生學習的依據。在學案里,教師要提出明確的學習要求。學習要求可包括以下方面:完成學習任務的時間、學習內容的范圍、完成學習任務所要達到的程度、自主學習成果展現的形式等。這就要求教師要提前考慮周全,對于學生學習的要求要一次性提出,內容上有梯度。學生自主學習時,教師要深入學生當中,觀察學生的學習狀況,檢查學習任務完成的情況,有針對性的.指導和幫助教師對自主學習方法和途徑的指導要適度,既要滿足學生完成學習任務的需要,又不能擠占學生自主探究的空間
其次,學習氛圍是合作學習成功的關鍵之一,教師要營造安全的心理環境、充裕的時空環境、熱情的幫助環境、真誠的激勵環境,只就要求教師在語言上也要有較高水平,會發動學生,會調動學生的積極性,讓課堂氣氛活躍起來,讓學生充分發揮自己的水平。
再是,由于課堂上主要是以學生為主。這就要求教師盡量少講,要充當好組織者、引導者、傾聽者的角色,不要急于發表自己的觀點,只要學生能講的教師就不要講,要避免因為教師呈現自己的觀點而打破學生的討論。學生說完的東西,如果沒有問題,教師就不要重復。教師對學習內容要點的講解要有的放矢,能起到畫龍點睛的作用。要在學生原有的水平上進行提升,有助于學生加深對知識的理解。
我們只有在教學中不斷的學習,不斷的改進自己,才能保證我們的課堂很精彩,是名副其實的優質課。
《一元二次方程》全章教案 15
【學習目標】
1.能根據具體問題中的數量關系,列出一元二次方程,體會方程是刻畫現實世界的一個有效的數學模型.
2.能根據具體問題的實際意義,檢驗結果是否合理.
【教學重點】
列一元二次方程解有關傳播問題、平均變化率問題的應用題
【教學難點】
發現傳播問題、平均變化率問題中的等量關系
【學習過程】
一、知識回顧
1、解一元二次方程都是有哪些方法?
2、列一元一次方程解應用題都是有哪些步驟?
二、新知探究
問題1:有一人患了流感,經過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?
分析:設每輪傳染中平均一個人傳染了x個人,那么患流感的這一個人在第一輪中傳染了_______人,第一輪后共有______人患了流感;
第二輪傳染中,這些人中的每個人又傳染了_______人,第二輪后共有_______人患了流感。
一.選一選
1.王先生到銀行存了一筆三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.設王先生存入的本金為x元,則下面所列方程正確的是( )
A.x+3×4.25%x=33825 B.x+4.25%x=33825
C.3×4.25%x=33825 D.3(x+4.25x)=33825
【考點】由實際問題抽象出一元一次方程.
【專題】增長率問題.
【分析】根據“利息=本金×利率×時間”(利率和時間應對應),代入數值,計算即可得出結論.
【解答】解:設王先生存入的本金為x元,根據題意得出:
x+3×4.25%x=33825;
故選:A.
【點評】此題主要考查了一元一次方程的應用,計算的'關鍵是根據利息、利率、時間和本金的關系,進行計算即可.
2.若一元二次方程x2﹣4x﹣5=0的根是直角三角形斜邊上的中線長,則這個直角三角形的斜邊長為( )
A.2 B.10 C.2或10 D.5
【考點】直角三角形斜邊上的中線;解一元二次方程-因式分解法.
【分析】解一元二次方程求出中線,再根據直角三角形斜邊上的中線等于斜邊的一半解答.
【解答】解:因式分解得,(x+1)(x﹣5)=0,由此得,x+1=0,x﹣5=0,所以,x1=﹣1,x2=5,所以,直角三角形斜邊上的中線長為5,所以,這個直角三角形的斜邊長為2×5=10.
故選B.
【點評】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,因式分解法解一元二次方程,熟記性質是解題的關鍵.
3.三角形兩邊的長是3和4,第三邊的長是方程x2﹣12x+35=0的根,則該三角形的周長為( )
A.14 B.12 C.12或14 D.以上都不對
【考點】解一元二次方程-因式分解法;三角形三邊關系.
【分析】易得方程的兩根,那么根據三角形的三邊關系,排除不合題意的邊,進而求得三角形周長即可.
【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.
當x=7時,3+4=7,不能組成三角形;
當x=5時,3+4>5,三邊能夠組成三角形.
∴該三角形的周長為3+4+5=12,故選B.
【點評】本題主要考查三角形三邊關系,注意在求周長時一定要先判斷是否能構成三角形.
一.積累·整合
1.某產品,原來每件的成本價是500元,若每件售價625元,則每件利潤率是.
A.12% B.25% C.30% D.50%
2.某次商品交易會上,所有參加會議的商家之間都簽訂了一份合同,共簽訂合同55份,則共有商家參加了交易會.
3.銀行的某種儲蓄的年利率為4%,小民存1000元,存滿一年,本息= 。
4.長方形的長比寬多8cm,面積為20m2,則它的周長為________.
二.拓展·應用
5.某鋼鐵廠去年1月某種鋼的產量為5000噸,3月上升到7200噸,這兩個月平均每個月增長的百分率________.
6.已知三角形的兩邊長分別是3和8,第三邊的數值是一元二次方程
x2-17x+66=0的根則此三角形的周長為_______.
7.某工廠一月份生產零件1000個,二月份生產零件1200個,那么二月份比一月份增產個增長率是___.
8.在一塊長12m,寬8m的長方形平地中央,劃出地方砌一個面積為24m2的長方形花臺,要使花壇四周的寬地寬度一樣,則這個寬度為多少?
三.探索·創新
9.某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加利潤,盡快減少庫存,商場決定采取適當的措施,經調查發現,如果每件襯衫降價1元,商場每天可多售出2件。
(1)若商場平均每天要盈利1200元,每件襯衫應降價多少元?
(2)每件襯衫降價多少元時,商場每天盈利最多?
【《一元二次方程》全章教案】相關文章:
一元二次方程的應用教案10-21
一元二次方程的教案范例08-19
一元二次方程數學教案11-04
一元二次方程的應用教案范文02-03
一元二次方程的教案設計02-10
數學教案:一元二次方程11-14
用公式解一元二次方程教案11-09
一元二次方程教案教學計劃02-07
配方法解一元二次方程教案03-03
- 相關推薦