<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>

            八年級數學教案

            時間:2025-12-23 15:24:12 教案

            八年級數學教案

              作為一名教職工,很有必要精心設計一份教案,教案是實施教學的主要依據,有著至關重要的作用。那要怎么寫好教案呢?以下是小編整理的八年級數學教案,僅供參考,希望能夠幫助到大家。

            八年級數學教案

            八年級數學教案1

              一、教學目標:

              1、知道負整數指數冪=(a≠0,n是正整數)、

              2、掌握整數指數冪的運算性質、

              3、會用科學計數法表示小于1的數、

              二、教學重點:

              掌握整數指數冪的運算性質、

              三、難點:

              會用科學計數法表示小于1的數、

              四、情感態度與價值觀:

              通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐、能利用事物之間的類比性解決問題、

              五、教學過程:

              (一)課堂引入

              1、回憶正整數指數冪的運算性質: (1)同底數的冪的乘法:am?an = am+n (m,n是正整數); (2)冪的乘方:(am)n = amn (m,n是正整數); (3)積的乘方:(ab)n = anbn (n是正整數); (4)同底數的冪的除法:am÷an = am?n ( a≠0,m,n是正整數,m>n); (5)商的乘方:()n = (n是正整數);

              2、回憶0指數冪的規定,即當a≠0時,a0 = 1、

              3、你還記得1納米=10?9米,即1納米=米嗎?

              4、計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)、

              (二)總結: 一般地,數學中規定: 當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數) 教師啟發學生由特殊情形入手,來看這條性質是否成立、 事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n (m,n是整數)這條性質也是成立的.、

              (三)科學記數法:

              我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0.000012 = 1.2×10?5.即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數、 啟發學生由特殊情形入手,比如0.012 = 1.2×10?2.0、0012 = 1.2×10?3,0、00012 = 1.2×10?4,以此發現其中的規律,從而有0.0000000012 = 1.2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1、

            八年級數學教案2

              一、教學目標

              ①經歷探索整式除法運算法則的過程,會進行簡單的整式除法運算(只要求單項式除以單項式,并且結果都是整式),培養學生獨立思考、集體協作的能力。

              ②理解整式除法的算理,發展有條理的思考及表達能力。

              二、教學重點與難點

              重點:整式除法的運算法則及其運用。

              難點:整式除法的運算法則的推導和理解,尤其是單項式除以單項式的運算法則。

              三、教學準備

              卡片及多媒體課件。

              四、教學設計

              (一)情境引入

              教科書第161頁問題:木星的質量約為1。90×1024噸,地球的質量約為5。98×1021噸,你知道木星的質量約為地球質量的多少倍嗎?

              重點研究算式(1。90×1024)÷(5。98×1021)怎樣進行計算,目的是給出下面兩個單項式相除的模型。

              注:教科書從實際問題引入單項式的除法運算,學生在探索這個問題的過程中,將自然地體會到學習單項式的除法運算的必要性,了解數學與現實世界的聯系,同時再次經歷感受較大數據的過程。

              (二)探究新知

              (1)計算(1。90×1024)÷(5。98×1021),說說你計算的根據是什么?

              (2)你能利用(1)中的方法計算下列各式嗎?

              8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

              (3)你能根據(2)說說單項式除以單項式的運算法則嗎?

              注:教師可以鼓勵學生自己發現系數、同底數冪的底數和指數發生的變化,并運用自己的`語言進行描述。

              單項式的除法法則的推導,應按從具體到一般的步驟進行。探究活動的安排,是使學生通過對具體的特例的計算,歸納出單項式的除法運算性質,并能運用乘除互逆的關系加以說明,也可類比分數的約分進行。在這些活動過程中,學生的化歸、符號演算等代數推理能力和有條理的表達能力得到進一步發展。重視算理算法的滲透是新課標所強調的。

              (三)歸納法則

              單項式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

              注:通過總結法則,培養學生的概括能力,養成用數學語言表達自己想法的數學學習習慣。

              (四)應用新知

              例2計算:

              (1)28x4y2÷7x3y;

              (2)—5a5b3c÷15a4b。

              首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號。對本例可以采用學生口述,教師板書的形式完成。口述和板書都應注意展示法則的應用,計算過程要詳盡,使學生盡快熟悉法則。

              注:單項式除以單項式,既要對系數進行運算,又要對相同字母進行指數運算,同時對只在一個單項式里含有的冪要加以注意,這些對剛剛接觸整式除法的學生來講,難免會出現照看不全的情況,所以更應督促學生細心解答問題。

              鞏固新知教科書第162頁練習1及練習2。

              學生自己嘗試完成計算題,同桌交流。

              注:在獨立解題和同伴的相互交流過程中讓學生自己去體會法則、掌握法則,印象更為深刻,也有助于培養學生良好的思維習慣和主動參與學習的習慣。

              (五)作業

              1、必做題:教科書第164頁習題15。3第1題;第2題。

              2、選做題:教科書第164頁習題15。3第8題

            八年級數學教案3

              一、教學目的

              1、 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

              2、 熟識等邊三角形的性質及判定、

              2、通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

              二、教學重點

              等腰三角形的性質及其應用。

              三、教學難點

              簡潔的邏輯推理。

              四、教學過程

              (一)復習鞏固

              1、敘述等腰三角形的性質,它是怎么得到的?

              等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。

              等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

              2、若等腰三角形的兩邊長為3和4,則其周長為多少?

              (二)新課

              在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

              等邊三角形具有什么性質呢?

              1、請同學們畫一個等邊三角形,用量角器量出各個內角的`度數,并提出猜想。

              2、你能否用已知的知識,通過推理得到你的猜想是正確的?

              等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到B=C,又由B+C=180,從而推出B=C=60。

              3、上面的條件和結論如何敘述?

              等邊三角形的各角都相等,并且每一個角都等于60。

              等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

              等邊三角形也稱為正三角形。

              例1、在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數。

              分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

              問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

              問題2:求1是否還有其它方法?

              (三)練習鞏固

              1、判斷下列命題,對的打,錯的打。

              a、等腰三角形的角平分線,中線和高互相重合( )

              b、有一個角是60的等腰三角形,其它兩個內角也為60( )

              2、如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數。

              (四)小結

              由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60。三線合一性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

              (五)作業

              1、課本P127─7,9

              2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

              EOD的度數。

              (一)課本P127─1、3、4、8題、

            【八年級數學教案】相關文章:

            八年級數學教案最新10-24

            八年級數學教案15篇10-22

            八年級數學教案(15篇)11-21

            八年級數學教案初中八年級數學上冊教案07-12

            華東師大版八年級下冊數學教案09-02

            北師大版八年級上冊數學教案優秀11-19

            數學教案11-09

            小學數學教案小學數學教案范文09-09

            對稱的數學教案11-01

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院