<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>

            八年級數學教案

            時間:2025-10-22 00:12:41 教案

            八年級數學教案15篇

              作為一名默默奉獻的教育工作者,時常要開展教案準備工作,教案有助于順利而有效地開展教學活動。教案要怎么寫呢?以下是小編收集整理的八年級數學教案,歡迎閱讀與收藏。

            八年級數學教案15篇

            八年級數學教案1

              一、素質教育目標

              (一)知識教學點

              1.掌握平行四邊形的判定定理1、2、3、4,并能與性質定理、定義綜合應用.

              2.使學生理解判定定理與性質定理的區別與聯系.

              3.會根據簡單的'條件畫出平行四邊形,并說明畫圖的依據是哪幾個定理.

              (二)能力訓練點

              1.通過“探索式試明法”開拓學生思路,發展學生思維能力.

              2.通過教學,使學生逐步學會分別從題設或結論出發尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力.

              (三)德育滲透點

              通過一題多解激發學生的學習興趣.

              (四)美育滲透點

              通過學習,體會幾何證明的方法美.

              二、學法引導

              構造逆命題,分析探索證明,啟發講解.

              三、重點·難點·疑點及解決辦法

              1.教學重點:平行四邊形的判定定理1、2、3的應用.

              2.教學難點:綜合應用判定定理和性質定理.

              3.疑點及解決辦法:在綜合應用判定定理及性質定理時,在什么條件下用判定定理,在什么條件下用性質定理

              (強調在求證平行四邊形時用判定定理在已知平行四邊形時用性質定理).

            八年級數學教案2

              一、教材分析教材的地位和作用:

              本節內容是第一課時《軸對稱》,本節立足于學生已有的生活經驗和數學活動經歷,從觀察生活中的軸對稱現象開始,從整體的角度認識軸對稱的特征;同時本節內容與圖形的三種變換操作(平移、翻折、旋轉)之一的“翻折”有著不可分割的聯系,通過對這一節課的學習,使學生從對圖形的感性認識上升到對軸對稱的理性認識,為進一步學習軸對稱性質及后面學習等腰三角形和圓等有關知識奠定基礎。同時這一節也是聯系數學與生活的橋梁。

              二、學情分析

              八年級學生有一定的知識水平,已經初步形成了一定觀察能力、語言表達能力,這節課是在學生學習了“全等三角形”相關內容之后安排的一節課,學生已經具備了一定的推理能力,因此,這節課通過觀察生活中的實例和動手實踐,讓學生自己去發現和總結軸對稱圖形和軸對稱的概念及它們之間的區別與聯系是切實可行的。

              三、教學目標及重點、難點的確定

              根據新課程標準、教材內容特點、和學生已有的認知結構、心理特征,我確定本節教學目標、重點、難點如下:

              (一)教學目標:

              1、知識技能

              (1)理解并掌握軸對稱圖形的概念,對稱軸;能準確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.

              (2)理解并掌握軸對稱的概念,對稱軸;了解對稱點.

              (3)了解軸對稱圖形和軸對稱的聯系與區別.

              2、過程與方法目標

              經歷“觀察——比較——操作——概括——總結一應用”的學習過程,培養學生的動手實踐能力、抽象思維和語言表達能力.

              3、情感、態度與價值觀

              通過對生活中數學問題的探究,進一步提高學生學數學、用數學的意識,在自主探究、合作交流的過程中,體會數學的重要作用,培養學生的學習興趣,熱愛生活的情感和欣賞圖形的對稱美。

              (二)教學重點:軸對稱圖形和軸對稱的有關概念.

              (三)教學難點:軸對稱圖形與軸對稱的聯系、區別

              .四、教法和學法設計

              本節課根據教材內容的特點和八年級學生的知識結構和心理特征。我選擇的:

              【教法策略】采用以直觀演示法和實驗發現法為主,設疑誘導法為輔。教學中教學中通過豐富的圖片展示,創設出問題情景,誘導學生思考、操作,教師適時地演示,并運用多媒體化靜為動,激發學生探求知識的欲望,逐步推導歸納得出結論,使學生始終處于主動探索問題的積極狀態,使不同層次學生的知識水平得到恰當的發展和提高。

              【學法策略】:讓學生在“觀察----比較——操作——概括——檢驗——應用”的學習過程中,自主參與知識的發生、發展、形成的過程,使學生在自主探索和合作交流中理解和掌握本節課的有關內容。

              【輔助策略】我利用多媒體課件輔助教學,適時呈現問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率

              五、說程序設計:

              新的課程標準指出學生的學習內容應該是現實的有意義的,有利于學生進行觀察、試驗、猜測、驗證、推理與交流等數學活動。為了達到預期的教學目標,我對整個教學過程進行了設計。

              (一)、觀圖激趣、設疑導入。

              出示圖片,設計故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

              [設計意圖]以興趣為先導,創設學生喜聞樂見的故事情景,激發了學生濃厚的學習興趣,

              (二)、實踐探索、感悟特征.

              《活動一(課件演示)觀察這些圖形有什么特點?》在這個環節中我首先出示一組常見的.具有代表性的典型的軸對稱圖形,出示后先讓學生自己觀察,并引導學生感知,無論是隨風起舞的風箏,凌空翱翔的飛機,還是古今中外各式風格的典型建筑很多圖形都給我們以美得感受。然后,教師適時提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學生觀察、猜想、探究、討論,教師可以適當地引導,讓學生發現:把一個圖形的某一部分沿著一條直線翻折180度后能與這個圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導學生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

              為了進一步認識軸對稱圖形的特點又出示了一組練習

              (練習1)這是一組常見幾何圖形,要求學生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

              [設計意圖]通過這個練習題不僅讓學生鞏固了軸對稱圖形的概念,而且讓學生認識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學生認識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

              (練習2)國家的一個象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進一步鞏固了軸對稱圖形的概念,培養了學生的觀察能力、想象能力,同時通過展示各國的國旗,不僅激發了學生的學習興趣,而且也拓展了學生的知識面。

              (三)、動手操作、再度探索新知。

              將一張紙對折,用筆尖扎出一個圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學中注重學生活動,鼓勵學生親自實踐,積極思考,在樂學的氛圍中,培養學生的動手能力,從而引出軸對稱概念。

              再次引導學生討論、歸納得出軸對稱的概念……。之后再結合動畫演示加深對軸對稱概念的理解,進而引出對稱軸、對稱點的概念.并結合圖形加以認識。

              (四)、鞏固練習、升華新知。

              出示幾幅圖形,請同學們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,

              在這組練習中讓學生動手、動口、動眼、動腦,充分調動了學生的各種感官參與學習,既加深了對兩個概念的理解,又鍛煉了同學的各方面能力。完成這組練習題后讓學生,歸納軸對稱圖形及軸對稱區別與聯系,先讓學生自己歸納,然后用多媒體展示。

              (課件演示)軸對稱圖形及兩個圖形成軸對稱區別與聯系

              (五)、綜合練習、發展思維。

              1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

              2、判斷:

              生活中不僅有些物體的形狀是軸對稱圖形,我們所學的數字、字母和漢字中也有一些可以看成軸對稱圖形。

              (1)下面的數字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

              0123456789ABCDEFGH

              3、像這樣寫法的漢字哪些是軸對稱圖形?

              口工用中由日直水清甲

              (這幾道題的練習做到了知識性、技能性、思想性和藝術性溶為一體。這樣設計,不但活躍了課堂氣氛,又檢查了學生掌握新知的情況,而且激發了學生的學習興趣,又讓學生感到數學就在自己的身邊)

              (六)歸納小結、布置作業

              [設計意圖]培養學生歸納和語言表達能力,鼓勵學生從數學知識、數學方法和數學情感等方面進行自我評價。作業布置要有層次,照顧學生個體差異使不同的人在數學上獲得不同的發展!

              六、設計說明

              這節課,我依據課程標準、教材特點、遵循學生的認知規律。通過六個環節的教學設計,通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學生輕松掌握了軸對稱圖形與關于直線成軸對稱兩個概念,指導學生操作、觀察、引導概括,獲取新知;同時注重培養學生的形象思維和抽象思維。在教學過程中讓學生動口、動手、動眼、動腦,使學生學有興趣、學有所獲。這就是我對本節課的理解和說明。

            八年級數學教案3

              一、教學目標:

              1、加深對加權平均數的理解

              2、會根據頻數分布表求加權平均數,從而解決一些實際問題

              3、會用計算器求加權平均數的值

              二、重點、難點和難點的突破方法:

              1、重點:根據頻數分布表求加權平均數

              2、難點:根據頻數分布表求加權平均數

              3、難點的突破方法:

              首先應先復習組中值的定義,在七年級下教材P72中已經介紹過組中值定義。因為在根據頻數分布表求加權平均數近似值過程中要用到組中值去代替一組數據中的每個數據的值,所以有必要在這里復習組中值定義。

              應給學生介紹為什么可以利用組中值代替一組數據中的每個數據的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數據分布較為均勻時,比如教材P140探究問題的表格中的第三組數據,它的范圍是41≤X≤61,共有20個數據,若分布較為平均,41、42、43、44…60個出現1次,那么這組數據的和為41+42+…+60=1010。而用組中值51去乘以頻數20恰好為1020≈1010,即當數據分布較為平均時組中值恰好近似等于它的平均數。所以利用組中值X頻數去代替這組數據的和還是比較合理的,而且這樣做的好處是簡化了計算量。

              為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統計表,體會表格的實際意義。

              三、例習題的意圖分析

              1、教材P140探究欄目的意圖。

              (1)、主要是想引出根據頻數分布表求加權平均數近似值的計算方法。

              (2)、加深了對“權”意義的理解:當利用組中值近似取代替一組數據中的平均值時,頻數恰好反映這組數據的'輕重程度,即權。

              這個探究欄目也可以幫助學生去回憶、復習七年級下的關于頻數分布表的一些內容,比如組、組中值及頻數在表中的具體意義。

              2、教材P140的思考的意圖。

              (1)、使學生通過思考這兩個問題過程中體會利用統計知識可以解決生活中的許多實際問題

              (2)、幫助學生理解表中所表達出來的信息,培養學生分析數據的能力。

              3、P141利用計算器計算平均值

              這部分篇幅較小,與傳統教材那種詳細介紹計算器使用方法產生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節課的重點內容不是利用計算器求加權平均數,但是掌握其使用方法確實可以運算變得簡單。統計中一些數據較大、較多的計算也變得容易些了。

              四、課堂引入

              采用教材原有的引入問題,設計的幾個問題如下:

              (1)、請同學讀P140探究問題,依據統計表可以讀出哪些信息

              (2)、這里的組中值指什么,它是怎樣確定的?

              (3)、第二組數據的頻數5指什么呢?

              (4)、如果每組數據在本組中分布較為均勻,比組數據的平均值和組中值有什么關系。

              五、隨堂練習

              1、某校為了了解學生作課外作業所用時間的情況,對學生作課外作業所用時間進行調查,下表是該校初二某班50名學生某一天做數學課外作業所用時間的情況統計表

              所用時間t(分鐘)人數

              0

              0<≤ 6

              20

              30

              40

              50

              (1)、第二組數據的組中值是多少?

              (2)、求該班學生平均每天做數學作業所用時間

              2、某班40名學生身高情況如下圖,

              請計算該班學生平均身高

              答案1.(1).15. (2)28. 2. 165

              六、課后練習:

              1、某公司有15名員工,他們所在的部門及相應每人所創的年利潤如下表

              部門A B C D E F G

              人數1 1 2 4 2 2 5

              每人創得利潤20 5 2.5 2 1.5 1.5 1.2

              該公司每人所創年利潤的平均數是多少萬元?

              2、下表是截至到20xx年費爾茲獎得主獲獎時的年齡,根據表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡?

              年齡頻數

              28≤X<30 4

              30≤X<32 3

              32≤X<34 8

              34≤X<36 7

              36≤X<38 9

              38≤X<40 11

              40≤X<42 2

              3、為調查居民生活環境質量,環保局對所轄的50個居民區進行了噪音(單位:分貝)水平的調查,結果如下圖,求每個小區噪音的平均分貝數。

              答案:1.約2.95萬元2.約29歲3.60.54分貝

            八年級數學教案4

              教學目標:

              1、知道負整數指數冪=(a≠0,n是正整數)、

              2、掌握整數指數冪的運算性質、

              3、會用科學計數法表示小于1的數、

              教學重點:

              掌握整數指數冪的運算性質。

              難點:

              會用科學計數法表示小于1的數。

              情感態度與價值觀:

              通過學習課堂知識使學生懂得任何事物之間是相互聯系的,理論來源于實踐,服務于實踐。能利用事物之間的類比性解決問題、

              教學過程:

              一、課堂引入

              1、回憶正整數指數冪的運算性質:

              (1)同底數的'冪的乘法:am?an = am+n(m,n是正整數);

              (2)冪的乘方:(am)n = amn (m,n是正整數);

              (3)積的乘方:(ab)n = anbn (n是正整數);

              (4)同底數的冪的除法:am÷an = am?n(a≠0,m,n是正整數,m>n);

              (5)商的乘方:()n = (n是正整數);

              2、回憶0指數冪的規定,即當a≠0時,a0 = 1、

              3、你還記得1納米=10?9米,即1納米=米嗎?

              4、計算當a≠0時,a3÷a5 ===,另一方面,如果把正整數指數冪的運算性質am÷an = am?n (a≠0,m,n是正整數,m>n)中的m>n這個條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。

              二、總結:一般地,數學中規定:當n是正整數時,=(a≠0)(注意:適用于m、n可以是全體整數)教師啟發學生由特殊情形入手,來看這條性質是否成立、事實上,隨著指數的取值范圍由正整數推廣到全體整數,前面提到的運算性質都可推廣到整數指數冪;am?an = am+n(m,n是整數)這條性質也是成立的、

              三、科學記數法:

              我們已經知道,一些較大的數適合用科學記數法表示,有了負整數指數冪后,小于1的正數也可以用科學記數法來表示,例如:0。000012 = 1。2×10?即小于1的正數可以用科學記數法表示為a×10?n的形式,其中a是整數位數只有1位的正數,n是正整數。啟發學生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此發現其中的規律,從而有0。0000000012 = 1。2×10?9,即對于一個小于1的正數,如果小數點后到第一個非0數字前有8個0,用科學記數法表示這個數時,10的指數是?9,如果有m個0,則10的指數應該是?m?1。

            八年級數學教案5

              知識結構:

              重點與難點分析:

              本節內容的重點是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關系轉化為邊的相等關系的重要依據,此定理為證明線段相等提供了又一種方法,這是本節的重點.推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質,在直角三角形中找邊和角的等量關系經常用到此推論.

              本節內容的難點是性質與判定的區別。等腰三角形的性質定理和判定定理是互逆定理,題設與結論正好相反.學生在應用它們的時候,經常混淆,幫助學生認識判定與性質的區別,這是本節的難點.另外本節的文字敘述題也是難點之一,和上節結合讓學生逐步掌握解題的思路方法.由于知識點的增加,題目的復雜程度也提高,一定要學生真正理解定理和推論,才能在解題時從條件得到用哪個定理及如何用.

              教法建議:

              本節課教學方法主要是“以學生為主體的討論探索法”。在數學教學中要避免過多告訴學生現成結論。提倡教師鼓勵學生討論解決問題的方法,引導他們探索數學的內在規律。具體說明如下:

              (1)參與探索發現,領略知識形成過程

              學生學習過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質定理的逆命題的什么?找一名學生口述完了,接下來問:此命題是否為真命?等同學們證明完了,找一名學生代表發言.最后找一名學生用文字口述定理的內容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學生親自動手實踐,積極參與發現,滿打滿算了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會。

              (2)采用“類比”的學習方法,獲取知識。

              由性質定理的學習,我們得到了幾個推論,自然想到:根據等腰三角形的判定定理,我們能得到哪些特殊的結論或者說哪些推論呢?這里先讓學生發表意見,然后大家共同分析討論,把一些有價值的、甚至就是教材中的推論板書出來。如果學生提到的不完整,教師可以做適當的點撥引導。

              (3)總結,形成知識結構

              為了使學生對本節課有一個完整的認識,便于今后的應用,教師提出如下問題,讓學生思考回答:(1)怎樣判定一個三角形是等腰三角形?有哪些定理依據?(2)怎樣判定一個三角形是等邊三角形?

              一.教學目標:

              1.使學生掌握等腰三角形的判定定理及其推論;

              2.掌握等腰三角形判定定理的'運用;

              3.通過例題的學習,提高學生的邏輯思維能力及分析問題解決問題的能力;

              4.通過自主學習的發展體驗獲取數學知識的感受;

              5.通過知識的縱橫遷移感受數學的辯證特征.

              二.教學重點:等腰三角形的判定定理

              三.教學難點:性質與判定的區別

              四.教學用具:直尺,微機

              五.教學方法:以學生為主體的討論探索法

              六.教學過程:

              1、新課背景知識復習

              (1)請同學們說出互逆命題和互逆定理的概念

              估計學生能用自己的語言說出,這里重點復習怎樣分清題設和結論。

              (2)等腰三角形的性質定理的內容是什么?并檢驗它的逆命題是否為真命題?

              啟發學生用自己的語言敘述上述結論,教師稍加整理后給出規范敘述:

              1.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等.

              (簡稱“等角對等邊”).

              由學生說出已知、求證,使學生進一步熟悉文字轉化為數學語言的方法.

              已知:如圖,△ABC中,∠B=∠C.

              求證:AB=AC.

              教師可引導學生分析:

              聯想證有關線段相等的知識知道,先需構成以AB、AC為對應邊的全等三角形.因為已知∠B=∠C,沒有對應相等邊,所以需添輔助線為兩個三角形的公共邊,因此輔助線應從A點引起.再讓學生回想等腰三角形中常添的輔助線,學生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

              注意:(1)要弄清判定定理的條件和結論,不要與性質定理混淆.

              (2)不能說“一個三角形兩底角相等,那么兩腰邊相等”,因為還未判定它是一個等腰三角形.

              (3)判定定理得到的結論是三角形是等腰三角形,性質定理是已知三角形是等腰三角形,得到邊邊和角角關系.

              2.推論1:三個角都相等的三角形是等邊三角形.

              推論2:有一個角等于60°的等腰三角形是等邊三角形.

              要讓學生自己推證這兩條推論.

              小結:證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

              證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

              3.應用舉例

              例1.求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形.

              分析:讓學生畫圖,寫出已知求證,啟發學生遇到已知中有外角時,常常考慮應用外角的兩個特性①它與相鄰的內角互補;②它等于與它不相鄰的兩個內角的和.要證AB=AC,可先證明∠B=∠C,因為已知∠1=∠2,所以可以設法找出∠B、∠C與∠1、∠2的關系.

              已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

              求證:AB=AC.

              證明:(略)由學生板演即可.

              補充例題:(投影展示)

              1.已知:如圖,AB=AD,∠B=∠D.

              求證:CB=CD.

              分析:解具體問題時要突出邊角轉換環節,要證CB=CD,需構造一個以 CB、CD為腰的等腰三角形,連結BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

              證明:連結BD,在 中, (已知)

              (等邊對等角)

              (已知)

              即

              (等教對等邊)

              小結:求線段相等一般在三角形中求解,添加適當的輔助線構造三角形,找出邊角關系.

              2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE/pic/p>

              分析:對于三個線段間關系,盡量轉化為等量關系,由于本題有兩個角平分線和平行線,可以通過角找邊的關系,BE=DE,DF=CF即可證明結論.

              證明: DE/pic/p>

              ,

              BE=DE,同理DF=CF.

              EF=DE-DF

              EF=BE-CF

              小結:

              (1)等腰三角形判定定理及推論.

              (2)等腰三角形和等邊三角形的證法.

              七.練習

              教材 P.75中1、2、3.

              八.作業

              教材 P.83 中 1.1)、2)、3);2、3、4、5.

              九.板書設計

            八年級數學教案6

              一、內容和內容解析

              1.內容

              二次根式的性質。

              2.內容解析

              本節教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

              對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學生學生根據算術平方根的意義,就具體數字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節課的教學重點為:理解二次根式的性質.

              二、目標和目標解析

              1.教學目標

              (1)經歷探索二次根式的性質的過程,并理解其意義;

              (2)會運用二次根式的性質進行二次根式的化簡;

              (3)了解代數式的概念.

              2.目標解析

              (1)學生能根據具體數字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

              (2)學生能靈活運用二次根式的性質進行二次根式的化簡;

              (3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.

              三、教學問題診斷分析

              二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養其靈活運用的能力.

              本節課的'教學難點為:二次根式性質的靈活運用.

              四、教學過程設計

              1.探究性質1

              問題1 你能解釋下列式子的含義嗎?

              師生活動:教師引導學生說出每一個式子的含義.

              【設計意圖】讓學生初步感知,這些式子都表示一個非負數的算術平方根的平方.

              問題2 根據算術平方根的意義填空,并說出得到結論的依據.

              師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

              【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

              問題3 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

              師生活動:引導學生歸納得出二次根式的性質: ( ≥0).

              【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質1,培養學生抽象概括的能力.

              例2 計算

              (1) ;(2) .

              師生活動:學生獨立完成,集體訂正.

              【設計意圖】鞏固二次根式的性質1,學會靈活運用.

              2.探究性質2

              問題4 你能解釋下列式子的含義嗎?

              師生活動:教師引導學生說出每一個式子的含義.

              【設計意圖】讓學生初步感知,這些式子都表示一個數的平方的算術平方根.

              問題5 根據算術平方根的意義填空,并說出得到結論的依據.

              師生活動 學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

              【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

              問題6 從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

              師生活動:引導學生歸納得出二次根式的性質: ( ≥0)

              【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質2,培養學生抽象概括的能力.

              例3 計算

              (1) ;(2) .

              師生活動:學生獨立完成,集體訂正.

              【設計意圖】鞏固二次根式的性質2,學會靈活運用.

              3.歸納代數式的概念

              問題7 回顧我們學過的式子,如, ( ≥0),這些式子有哪些共同特征?

              師生活動:學生概括式子的共同特征,得出代數式的概念.

              【設計意圖】學生通過觀察式子的共同特征,形成代數式的概念,培養學生的概括能力.

              4.綜合運用

              (1)算一算:

              【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

              (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

              【設計意圖】通過此問題的設計,加深學生對 的理解,開闊學生的視野,訓練學生的思維.

              (3)談一談你對 與 的認識.

              【設計意圖】加深學生對二次根式性質的理解.

              5.總結反思

              (1)你知道了二次根式的哪些性質?

              (2)運用二次根式性質進行化簡需要注意什么?

              (3)請談談發現二次根式性質的思考過程?

              (4)想一想,到現在為止,你學習了哪幾類字母表示數得到的式子?說說你對代數式的認識.

              6.布置作業:教科書習題16.1第2,4題.

              五、目標檢測設計

              1. ; ; .

              【設計意圖】考查對二次根式性質的理解.

              2.下列運算正確的是( )

              A. B. C. D.

              【設計意圖】考查學生運用二次根式的性質進行化簡的能力.

              3.若 ,則 的取值范圍是 .

              【設計意圖】考查學生對一個數非負數的算術平方根的理解.

              4.計算: .

              【設計意圖】考查二次根式性質的靈活運用.

            八年級數學教案7

              知識目標:理解函數的概念,能準確識別出函數關系中的自變量和函數

              能力目標:會用變化的量描述事物

              情感目標:回用運動的觀點觀察事物,分析事物

              重點:函數的概念

              難點:函數的概念

              教學媒體:多媒體電腦,計算器

              教學說明:注意區分函數與非函數的關系,學會確定自變量的取值范圍

              教學設計:

              引入:

              信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數值表,你能看出小明各周歲時體重是如何變化的嗎?

              新課:

              問題:(1)如圖是某日的氣溫變化圖。

              ① 這張圖告訴我們哪些信息?

              ② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規律的?

              (2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標刻的,下表中是一些對應的數:

              ① 這表告訴我們哪些信息?

              ② 這張表是怎樣刻畫波長和頻率之間的變化規律的,你能用一個表達式表示出來嗎?

              一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應,那么我們就說x是自變量,y是x的函數。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

              范例:例1 判斷下列變量之間是不是函數關系:

              (5) 長方形的`寬一定時,其長與面積;

              (6) 等腰三角形的底邊長與面積;

              (7) 某人的年齡與身高;

              活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發現變量和函數的關系

              思考:自變量是否可以任意取值

              例2 一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

              (1) 寫出表示y與x的函數關系式.

              (2) 指出自變量x的取值范圍.

              (3) 汽車行駛200km時,油箱中還有多少汽油?

              解:(1)y=50-0.1x

              (2)0500

              (3)x=200,y=30

              活動2:練習教材9頁練習

              小結:(1)函數概念

              (2)自變量,函數值

              (3)自變量的取值范圍確定

              作業:18頁:2,3,4題

            八年級數學教案8

              分式方程

              教學目標

              1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

              2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。

              3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的應用價值.

              教學重點:

              將實際問題中的等量 關系用分式方程表示

              教學難點:

              找實際問題中的等量關系

              教學過程:

              情境導入:

              有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

              如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

              根據題意,可得方程___________________

              二、講授新課

              從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

              這 一問題中有哪些等量關系?

              如果設客車由高速公路從甲地到乙地 所需的`時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

              根據題意,可得方程_ _____________________。

              學生分組探討、交流,列出方程.

              三.做一做:

              為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

              四.議一議:

              上面所得到的方程有什么共同特點?

              分母中含有未知數的方程叫做分式方程

              分式方程與整式方程有什么區別?

              五、 隨堂練習

              (1)據聯合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

              (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

              (3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

              六、學 習小結

              本節課你學到了哪些知識?有什么感想?

              七.作業布置

            八年級數學教案9

              一、課堂導入

              回顧平行四邊的性質定理及定義

              1.什么叫平行四邊形?平行四邊形有什么性質?

              2.將以上的性質定理,分別用命題形式敘述出來。(如果……那么……)

              根據平行四邊形的定義,我們研究了平行四邊形的其它性質,那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質定理的逆命題是否成立?

              二、新課講解

              平行四邊形的判定:

              (定義法):兩組對邊分別平行的四邊形的平邊形。

              幾何語言表達定義法:

              ∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形

              解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。

              活動:用做好的紙條拼成一個四邊形,其中強調兩組對邊分別相等。

              (平行四邊形判定定理):

              (一)兩組對邊分別相等的四邊形是平行四邊形。

              設問:這個命題的前提和結論是什么?

              已知:四邊形ABCD中,AB=CD,BC=DA。

              求證:四邊ABCD是平行四邊形。

              分析:判定平行四邊形的依據目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結BD。易證三角形全等。

              板書證明過程。

              小結:用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的'方法為:

              平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形

              (二)設問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?

              活動:課本探究內容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?

              設問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設、結論,然后寫出已知、求證及證明過程。)

            八年級數學教案10

              教學目標:

              知識目標:

              1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。

              2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。

              3、會對一個具體實例進行概括抽象成為數學問題。

              能力目標:

              1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。

              2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。

              情感目標:

              1、經歷函數概念的抽象概括過程,體會函數的模型思想。

              2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。

              教學重點:

              掌握函數概念。

              判斷兩個變量之間的關系是否可看作函數。

              能把實際問題抽象概括為函數問題。

              教學難點:

              理解函數的概念。

              能把實際問題抽象概括為函數問題。

              教學過程設計:

              一、創設問題情境,導入新課

              『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?

              『生』:摩天輪。

              『師』:你們坐過嗎?

              ……

              『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?

              『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。

              『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。

              大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:

              t/分 0 1 2 3 4 5 …… h/米

              t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

              『師』:對于給定的時間t,相應的高度h確定嗎?

              『生』:確定。

              『師』:在這個問題中,我們研究的對象有幾個?分別是什么?

              『生』:研究的對象有兩個,是時間t和高度h。

              『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。

              二、新課學習

              做一做

              (1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的.?

              填寫下表:

              層數n 1 2 3 4 5 … 物體總數y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?

              『生』:變量有兩個,是層數與圓圈總數。

              (2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)

              ①計算當fenbie為50,60,100時,相應的滑行距離S是多少?

              ②給定一個V值,你能求出相應的S值嗎?

              解:略

              議一議

              『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?

              『生』:相同點是:這三個問題中都研究了兩個變量。

              不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。

              『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。

              函數的概念

              在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。

              一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。

              三、隨堂練習

              書P152頁 隨堂練習1、2、3

              四、本課小結

              初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。

              在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。

              函數的三種表達式:

              圖象;(2)表格;(3)關系式。

              五、探究活動

              為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?

              (答案:Y=1.8x-6或)

              六、課后作業

              習題6.1

            八年級數學教案11

              第11章平面直角坐標系

              11。1平面上點的坐標

              第1課時平面上點的坐標(一)

              教學目標

              【知識與技能】

              1。知道有序實數對的概念,認識平面直角坐標系的相關知識,如平面直角坐標系的構成:橫軸、縱軸、原點等。

              2。理解坐標平面內的點與有序實數對的一一對應關系,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

              3。能在方格紙中建立適當的平面直角坐標系來描述點的位置。

              【過程與方法】

              1。結合現實生活中表示物體位置的例子,理解有序實數對和平面直角坐標系的作用。

              2。學會用有序實數對和平面直角坐標系中的點來描述物體的位置。

              【情感、態度與價值觀】

              通過引入有序實數對、平面直角坐標系讓學生體會到現實生活中的問題的解決與數學的發展之間有聯系,感受到數學的價值。

              重點難點

              【重點】

              認識平面直角坐標系,寫出坐標平面內點的坐標,已知坐標能在坐標平面內描出點。

              【難點】

              理解坐標系中的坐標與坐標軸上的數字之間的關系。

              教學過程

              一、創設情境、導入新知

              師:如果讓你描述自己在班級中的位置,你會怎么說?

              生甲:我在第3排第5個座位。

              生乙:我在第4行第7列。

              師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數字確定下來。

              二、合作探究,獲取新知

              師:在以上幾個問題中,我們根據一個物體在兩個互相垂直的方向上的數量來表示這個物體

              的位置,這兩個數量我們可以用一個實數對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什么呢?

              生:3排5號。

              師:對,它們對應的.不是同一個位置,所以要求表示物體位置的這個實數對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

              生:用一個有序的實數對來表示。

              師:對。我們學過實數與數軸上的點是一一對應的,有序實數對是不是也可以和一個點對應起來呢?

              生:可以。

              教師在黑板上作圖:

              我們可以在平面內畫兩條互相垂直、原點重合的數軸。水平的數軸叫做x軸或橫軸,取向右為

              正方向;豎直的數軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構成了平面直角坐標系,這個平面叫做坐標平面。

              師:有了平面直角坐標系,平面內的點就可以用一個有序實數對來表示了。現在請大家自己動手畫一個平面直角坐標系。

              學生操作,教師巡視。教師指正學生易犯的錯誤。

              教師邊操作邊講解:

              如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在后,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

              教師多媒體出示:

              師:如圖,請同學們寫出A、B、C、D這四點的坐標。

              生甲:A點的坐標是(—5,4)。

              生乙:B點的坐標是(—3,—2)。

              生丙:C點的坐標是(4,0)。

              生丁:D點的坐標是(0,—6)。

              師:很好!我們已經知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

              教師邊操作邊講解:

              在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交于一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,并描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

              學生動手作圖,教師巡視指導。

              三、深入探究,層層推進

              師:兩個坐標軸把坐標平面劃分為四個區域,從x軸正半軸開始,按逆時針方向,把這四個區域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬于任何一個象限。在同一象限內的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

              生:都一樣。

              師:對,由作垂線求坐標的過程,我們知道第一象限內的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內點的坐標的符號嗎?

              生:能。第二象限內的點的坐標的符號為(—,+),第三象限內的點的坐標的符號為(—,—),第四象限內的點的坐標的符號為(+,—)。

              師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

              生:能,在第二象限。

              四、練習新知

              師:現在我給出幾個點,你們判斷一下它們分別在哪個象限。

              教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

              生甲:A點在第三象限。

              生乙:B點在第四象限。

              生丙:C點不屬于任何一個象限,它在y軸上。

              生丁:D點不屬于任何一個象限,它在x軸上。

              師:很好!現在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

              學生作圖,教師巡視,并予以指導。

              五、課堂小結

              師:本節課你學到了哪些新的知識?

              生:認識了平面直角坐標系,會寫出坐標平面內點的坐標,已知坐標能描點,知道了四個象限以及四個象限內點的符號特征。

              教師補充完善。

              教學反思

              物體位置的說法和表述物體的位置等問題,學生在實際生活中經常遇到,但可能沒有想到這些問題與數學的聯系。教師在這節課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數學的魅力。在教學中我讓學生由生活中的實例與坐標的聯系感受坐標的實用性,增強了學生學習數學的興趣。

              第2課時平面上點的坐標(二)

              教學目標

              【知識與技能】

              進一步學習和應用平面直角坐標系,認識坐標系中的圖形。

              【過程與方法】

              通過探索平面上的點連接成的圖形,形成二維平面圖形的概念,發展抽象思維能力。

              【情感、態度與價值觀】

              培養學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

              重點難點

              【重點】

              理解平面上的點連接成的圖形,計算圍成的圖形的面積。

              【難點】

              不規則圖形面積的求法。

              教學過程

              一、創設情境,導入新知

              師:上節課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,并在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

              學生作圖。

              教師邊操作邊講解:

              二、合作探究,獲取新知

              師:現在我們把這三個點用線段連接起來,看一下得到的是什么圖形?

              生甲:三角形。

              生乙:直角三角形。

              師:你能計算出它的面積嗎?

              生:能。

              教師挑一名學生:你是怎樣算的呢?

              生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

              師:很好!

              教師邊操作邊講解:

              大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),并將它們依次連接起來看看形成的是什么

              圖形?

              學生完成操作后回答:平行四邊形。

              師:你能計算它的面積嗎?

              生:能。

              教師挑一名學生:你是怎么計算的呢?

              生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連接形成圖形,下面我們來看這樣一個連接成的圖形:

              教師多媒體出示下圖:

            八年級數學教案12

              教學目標:

              1、知識目標:

              (1)掌握已知三邊畫三角形的方法;

              (2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

              (3)會添加較明顯的輔助線.

              2、能力目標:

              (1)通過尺規作圖使學生得到技能的訓練;

              (2)通過公理的初步應用,初步培養學生的邏輯推理能力.

              3、情感目標:

              (1)在公理的形成過程中滲透:實驗、觀察、歸納;

              (2)通過變式訓練,培養學生“舉一反三”的學習習慣.

              教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

              教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

              教學用具:直尺,微機

              教學方法:自學輔導

              教學過程:

              1、新課引入

              投影顯示

              問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

              這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

              2、公理的獲得

              問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

              讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

              公理:有三邊對應相等的兩個三角形全等。

              應用格式: (略)

              強調說明:

              (1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

              (2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

              (3)、此公理與前面學過的公理區別與聯系

              (4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

              (5)說明AAA與SSA不能判定三角形全等。

              3、公理的'應用

              (1) 講解例1。學生分析完成,教師注重完成后的點評。

              例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

              求證:AD⊥BC

              分析:(設問程序)

              (1)要證AD⊥BC只要證什么?

              (2)要證∠1= 只要證什么?

              (3)要證∠1=∠2只要證什么?

              (4)△ABD和△ACD全等的條件具備嗎?依據是什么?

              證明:(略)

              (2)講解例2(投影例2 )

              例2已知:如圖AB=DC,AD=BC

              求證:∠A=∠C

              (1)學生思考、分析、討論,教師巡視,適當參與討論。

              (2)找學生代表口述證明思路。

              思路1:連接BD(如圖)

              證△ABD≌△CDB(SSS)先得∠A=∠C

              思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

              (3)教師共同討論后,說明思路1較優,讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

              例3如圖,已知AB=AC,DB=DC

              (1)若E、F、G、H分別是各邊的中點,求證:EH=FG

              (2)若AD、BC連接交于點P,問AD、BC有何關系?證明你的結論。

              學生思考、分析,適當點撥,找學生代表口述證明思路

              讓學生在練習本上寫出證明,然后選擇投影顯示。

              證明:(略)

              說明:證直線垂直可證兩直線夾角等于 ,而由兩鄰補角相等證兩直線的夾角等于 ,又是很重要的一種方法。

              例4 如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

              求證:AC=2AE.

              證明:(略)

              學生口述證明思路,教師強調說明:“中線”條件下的常規作輔助線法。

              5、課堂小結:

              (1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

              在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

              (2)三種方法的綜合運用

              讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

              6、布置作業:

              a、書面作業P70#11、12

              b、上交作業P70#14 P71B組3

            八年級數學教案13

               一、學習目標及重、難點:

              1、了解方差的定義和計算公式。

              2、理解方差概念的產生和形成的過程。

              3、會用方差計算公式來比較兩組數據的波動大小。

              重點:方差產生的必要性和應用方差公式解決實際問題。

              難點:理解方差公式

              二、自主學習:

              (一)知識我先懂:

              方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

              我們用它們的平均數,表示這組數據的方差:即用

              來表示。

              給力小貼士:方差越小說明這組數據越 。波動性越 。

              (二)自主檢測小練習:

              1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

              2、甲、乙兩組數據如下:

              甲組:10 9 11 8 12 13 10 7;

              乙組:7 8 9 10 11 12 11 12.

              分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

              三、新課講解:

              引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

              甲:9、10、 10、13、7、13、10、8、11、8;

              乙:8、13、12、11、10、12、7、7、10、10;

              問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

              (2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

              歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

              我們用它們的平均數,表示這組數據的方差:即用 來表示。

              (一)例題講解:

              例1、 段巍和金志強兩人參加體育項目訓練,近期的.5次測試成績如下表所示,誰的成績比較穩定?為什么?、

              測試次數 第1次 第2次 第3次 第4次 第5次

              段巍 13 14 13 12 13

              金志強 10 13 16 14 12

              給力提示:先求平均數,在利用公式求解方差。

              (二)小試身手

              1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

              甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

              經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定

              去參加比賽。

              1、求下列數據的眾數:

              (1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

              2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

              四、課堂小結

              方差公式:

              給力提示:方差越小說明這組數據越 。波動性越 。

              每課一首詩:求方差,有公式;先平均,再求差;

              求平方,再平均;所得數,是方差。

              五、課堂檢測:

              1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

              小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

              小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

              如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

              六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

              七、學習小札記:

              寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

            八年級數學教案14

              ●教學目標

              (一)教學知識點

              1.掌握相似 三角形的定義、表示法,并能根據定義判斷兩個三角形是否相似.

              2.能根據相似比進行計 算.

              (二)能力訓練要求

              1.能根據定義判斷兩個三角形是否相似,訓練 學生的判斷能力.

              2.能根據相似比求長度和角度,培養學生的運用能力.

              (三)情感與價值觀要求

              通過與相似多邊形有關概念的類比,滲透類比的教學思想,并領會特殊與一般的關系.

              ●教學重點 相似三角形的定義及運用.

              ●教學難點 根據定義求線段長或角的.度數.

              ●教學過程

              Ⅰ.創設問題情境,引入新課

              今天, 我們就來研究相似三角形.

              Ⅱ.新課講解

              1.相似三角形的定義及記法

              三角對應相等,三邊 對應成比例的兩個三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

              其中對應頂點要寫在對應位置,如A與D,B與E,C與F相對應.AB∶DE等于相似比.

              2.想一想

              如果△ABC∽△DEF,那么哪些角是對應角?哪些邊是對應邊?對應 角 有什么關系?對應邊呢?

              所以 D、E、F. .

              3.議一議,學生討論

              (1)兩個全等三角形一定相似嗎?為什么?

              (2)兩個直角三角 形一 定相似嗎?兩個等腰直角三角形呢?為 什么?

              (3)兩個等腰三角形一定相似嗎?兩個等邊三角形呢?為什么?

              結論:兩 個全等三角形一定相似.

              兩個 等腰直角三角形一定相似.兩個等邊三角形一定相似.兩個直角三角形和兩個等腰三角形不一定相似.

              4.例題

              例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實際長度.

              例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

              ACB=40,求(1)AED和ADE的度數。(2)DE的長.

              5.想一想

              在例2的條件下,圖中有哪些線段成比例?

              Ⅲ.課堂練習 P129

              Ⅳ.課時小結

              相似三角形的 判定方法定義法.

              Ⅴ.課后作業

            八年級數學教案15

              一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。

              1.平移

              2.平移的性質:

              ⑴經過平移,對應點所連的線段平行且相等;

              ⑵對應線段平行且相等,對應角相等。

              ⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。

              (4)平移后的圖形與原圖形全等。

              3.簡單的平移作圖

              ①確定個圖形平移后的位置的條件:

              ⑴需要原圖形的.位置;

              ⑵需要平移的方向;

              ⑶需要平移的距離或一個對應點的位置。

              ②作平移后的圖形的方法:

              ⑴找出關鍵點;⑵作出這些點平移后的對應點;

              ⑶將所作的對應點按原來方式順次連接,所得的;

              二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。

              1.旋轉

              2.旋轉的性質

              ⑴旋轉變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。

              ⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。

              ⑶任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。

              ⑷旋轉前后的兩個圖形全等。

              3.簡單的旋轉作圖

              ⑴已知原圖,旋轉中心和一對對應點,求作旋轉后的圖形。

              ⑵已知原圖,旋轉中心和一對對應線段,求作旋轉后的圖形。

              ⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。

              三、分析組合圖案的形成

              ①確定組合圖案中的“基本圖案”

              ②發現該圖案各組成部分之間的內在聯系

              ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;

              ⑸旋轉變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。

            【八年級數學教案】相關文章:

            八年級數學教案07-12

            八年級數學教案最新10-24

            八年級數學教案(15篇)11-21

            八年級數學教案初中八年級數學上冊教案07-12

            華東師大版八年級下冊數學教案09-02

            北師大版八年級上冊數學教案優秀11-19

            數學教案11-09

            小學數學教案小學數學教案范文09-09

            對稱的數學教案11-01

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院