【薦】初中數學教案
作為一名人民教師,就難以避免地要準備教案,教案是教學活動的總的組織綱領和行動方案。那么寫教案需要注意哪些問題呢?下面是小編精心整理的初中數學教案,歡迎閱讀與收藏。

初中數學教案1
教學目標
1.使學生在了解代數式概念的基礎上,能把簡單的與數量有關的詞語用代數式表示出來;
2.初步培養學生觀察、分析和抽象思維的能力.
教學重點和難點
重點:列代數式.
難點:弄清楚語句中各數量的意義及相互關系.
課堂教學過程設計
一、從學生原有的認知結構提出問題
1庇么數式表示乙數:(投影)
(1)乙數比x大5;(x+5)
(2)乙數比x的2倍小3;(2x-3)
(3)乙數比x的倒數小7;(-7)
(4)乙數比x大16%((1+16%)x)
(應用引導的方法啟發學生解答本題)
2痹詿數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式北窘誑撾頤薔屠匆黃鷓習這個問題
二、講授新課
例1用代數式表示乙數:
(1)乙數比甲數大5;(2)乙數比甲數的2倍小3;
(3)乙數比甲數的倒數小7;(4)乙數比甲數大16%
分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數
解:設甲數為x,則乙數的代數式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本題應由學生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x
例2用代數式表示:
(1)甲乙兩數和的2倍;
(2)甲數的與乙數的的差;
(3)甲乙兩數的平方和;
(4)甲乙兩數的和與甲乙兩數的差的積;
(5)乙甲兩數之和與乙甲兩數的差的積
分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式
解:設甲數為a,乙數為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本題應由學生口答,教師板書完成)
此時,教師指出:a與b的.和,以及b與a的和都是指(a+b),這是因為加法有交換律鋇玜與b的差指的是(a-b),而b與a的差指的是(b-a)繃秸咼饗圓煌,這就是說,用文字語言敘述的句子里應特別注意其運算順序
例3用代數式表示:
(1)被3整除得n的數;
(2)被5除商m余2的數
分析本題時,可提出以下問題:
(1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的數如何表示?
(2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?
解:(1)3n;(2)5m+2
(這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)
例4設字母a表示一個數,用代數式表示:
(1)這個數與5的和的3倍;(2)這個數與1的差的;
(3)這個數的5倍與7的和的一半;(4)這個數的平方與這個數的的和
分析:啟發學生,做分析練習比緄1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力)
例5設教室里座位的行數是m,用代數式表示:
(1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?
(2)教室里座位的行數是每行座位數的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數)
解:(1)m(m+6)個;(2)(m)m個
三、課堂練習
1鄙杓資為x,乙數為y,用代數式表示:(投影)
(1)甲數的2倍,與乙數的的和;(2)甲數的與乙數的3倍的差;
(3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商
2庇么數式表示:
(1)比a與b的和小3的數;(2)比a與b的差的一半大1的數;
(3)比a除以b的商的3倍大8的數;(4)比a除b的商的3倍大8的數
3庇么數式表示:
(1)與a-1的和是25的數;(2)與2b+1的積是9的數;
(3)與2x2的差是x的數;(4)除以(y+3)的商是y的數
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄
四、師生共同小結
首先,請學生回答:
1痹躚列代數式?2繃寫數式的關鍵是什么?
其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式:
(1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一);
(2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;
(3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備幣求學生一定要牢固掌握
五、作業
1庇么數式表示:
(1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?
(2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?
2幣閻一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學法探究
已知圓環內直徑為acm,外直徑為bcm,將100個這樣的圓環一個接著一個環套環地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環接在一起的情形,看有沒有規律.
當圓環為三個的時候,如圖:
此時鏈長為,這個結論可以繼續推廣到四個環、五個環、…直至100個環,答案不難得到:
解:=99a+b(cm)
今天的內容就介紹到這里了。
初中數學教案2
一、教學目標
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質和,并能靈活應用;
4、通過二次根式的計算培養學生的邏輯思維能力;
5、通過二次根式性質和的介紹滲透對稱性、規律性的數學美。
二、教學重點和難點
重點:
(1)二次根的意義;
(2)二次根式中字母的'取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學方法
啟發式、講練結合。
四、教學過程
(一)復習提問
1、什么叫平方根、算術平方根?
2、說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式。
對于請同學們討論論應注意的問題,引導學生總結:
(1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。
例1當a為實數時,下列各式中哪些是二次根式?
例2 x是怎樣的實數時,式子在實數范圍有意義?
解:略。
說明:這個問題實質上是在x是什么數時,x—3是非負數,式子有意義。
例3當字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數必須是非負數,把問題轉化為解不等式。
解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時,是二次根式。
(2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當x>0時,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。當x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何實數時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數。
(4)由—b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數學教案3
在初中數學學習階段中,函數部分主要包括了一次函數和二次函數。本文針對一次函數的知識結構和教學方法進行分析。一次函數,用公式表示就是y=kx+b(k≠0)。一次函數不僅在數學的教學中是重要的知識點,而且在日常生活中也得到了非常廣泛的運用。通過對學生進行調查,了解到大部分學生認為一次函數知識的學習較為困難。因此,需要對一次函數的教學特點、教學方法進行分析,旨在能夠有效的提高初中數學函數的教學質量,達到預期的教學效果。
一、注重提高學生的學習興趣
函數是初中數學教學的重要核心內容,其思想方法涉及到方程、求極限、代數式以及幾何等方面的內容,其對于培養學生的邏輯思維能力具有十分重要的作用。對初中一次函數進行教學時,要注重結合生活實例,來對一次函數的知識點進行擴展,這樣有利于極大的提高學生的積極性和學習興趣,并提高一次函數教學的質量和效果。興趣是最好的老師,因此,在教學過程中,教師通過引進生活中的實例,這樣有利于拉近函數與學生的距離,進而引起學生的好奇心和求知欲。另外,教師在引進一次函數的生活實例時,教師運用情境創設法,創造出和一次函數知識點有關的情境,提出相應的問題,引導學生對問題進行分析、思考和討論,實現一次函數知識內容和現實生活的緊密聯系,進而引導學生運用學到的一次函數知識來解決現實生活中的實際問題。在學生進行解決的過程中,進而提高對知識的理解掌握能力,最終實現一次函數的教學目的。
二、結合一次函數的知識特征
由于一次函數是初中數學教學中的重點和難點,所以,要引起對這塊知識的重視度。教師在進行初中一次函數的教學過程中,對一次函數自身的知識、特征進行了解,找到一次函數知識內容的重點內容,構建全面系統性的教學思想體系,對一次函數知識內容進行實踐教學,進一步提高學生對一次函數知識點的理解和掌握能力,有效的提高課堂的教學效率。由于函數知識內容在初中階段的數學教學過程中屬于基礎知識,并且是學生第一次接觸的知識。因此,在對初中數學的一次函數知識進行教學時,通過對學生的接受能力進行了解,設計出生動有趣的教學內容,探尋函數教學知識的學習規律和方法,最終提高學生的學習興趣。例如,教師通過對一次函數概念的本質進行分析,讓學生了解到一次函數的公式:y=kx+b(k≠0),其中k、b為常數,k≠0,x屬于自變量,b=0,一次函數公式可以作為正比例函數公式。由此,讓學生了解到,正比例函數是一種特殊的一次函數,在具體的解題過程中,將探索驗證的結構運用在解題思考的過程中。
三、運用數形結合的方法
由于函數具有抽象性的特點,單從公式來看,不能清晰的'了解到公式所表達的內容。因此,在進行一次函數的教學過程中,對一次函數的解析式與函數圖像之間的關系進行了解,運用數形結合的方式,給學生滲透數形結合思想,進一步開展一次函數的教學實踐。在函數的知識結構中,對一次函數公式進行表示,可以通過運用函數的解析式或者函數圖像的方式,來對函數公式、自變量的變化規律進行充分的表達,并讓學生了解到函數的解析式與函數圖像之間的關系。在開展一次函數的教學實踐中,教師要注意加強對學生進行一次函數解析式和圖像關系的分析與探尋,在解答一次函數問題的過程中,強調學生運用數形結合的方式,解決一次函數問題。例如,對于一次函數y=kx+b(k≠0),對其函數解析式和圖像關系的分析時,由于常數k和b可以取不同的值,所以,受到常數k、b取值不同因素的影響,一次函數所列出的解析式情況也就不同。那么,將常數k和b取值上的變化給函數解析式造成的影響,代入到函數圖像的關系分析中,將常數k、b取值結果的正負情況表現出來。例如,當k>0且b>0,那么函數的圖像必定經過一、三象限,函數值y隨著x的增加而不斷發生變化,函數圖像和y軸的正半軸相交;k除此之外,還可以運用對比的方法,通過對一次函數和正比例函數進行對比,運用類比的方法,進行開展一次函數教學實踐。由于正比例函數是一次函數中的特殊表現形式,所以,在進行一次函數的教學時,對正比例函數和一次函數進行對比,讓學生掌握了解一次函數特殊形式的規律,提高其運用能力。還可以運用待定系數法進行一次函數的解題,給學生傳授解題思想。
三、結語
總而言之,函數教學知識點在初中的數學教學過程中是其中重要的內容,因此,在教學的實踐過程中,教師要通過結合函數相關的理論教學知識,了解學生的接受能力,運用科學、合理、行之有效的教學方法,營造生動活潑的教學氛圍,有利于極大的調動學生學習函數的積極性,讓學生樹立學習自信心,最終有效的提高初中數學教學的質量水平、學生的學習效率和成績。
初中數學教案4
問題描述:
初中數學教學案例
初中的,隨便那個年級.20xx字.案例和反思
1個回答 分類:數學 20xx-11-30
問題解答:
我來補答
2.3 平行線的性質
一、教材分析:
本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節 平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神.
情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的'探究過程
四、教學方法:
“引導發現法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:大屏幕、實物投影
七、教學過程:
(一)創設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
(二)數形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數
數量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養創新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質2 兩條直線被第三條直線所截,內錯角相等.
(兩直線平行,內錯角相等)
性質3 兩條直線被第三條直線所截,同旁內角互補.
(兩直線平行,同旁內角互補)
(四)實際應用,優勢互補
1.(搶答)
(1)如圖,平行線AB、CD被直線AE所截
①若∠1 = 110°,則∠2 = °.理由:.
②若∠1 = 110°,則∠3 = °.理由:.
③若∠1 = 110°,則∠4 = °.理由:.
(2)如圖,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
(3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= .
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數學問題;
3.用數形結合的方法來解決問題.
(六)作業 第69頁 2、4、7.
八、教學反思:
①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣.
②學的轉變:學生的角色從學會轉變為會學.本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值.
初中數學教案5
教學目標:
1、進一步理解函數的概念,能從簡單的實際事例中,抽象出函數關系,列出函數解析式;
2、使學生分清常量與變量,并能確定自變量的取值范圍.
3、會求函數值,并體會自變量與函數值間的對應關系.
4、使學生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量的取值范圍的求法.
5、通過函數的教學使學生體會到事物是相互聯系的.是有規律地運動變化著的.
教學重點:了解函數的意義,會求自變量的取值范圍及求函數值.
教學難點:函數概念的抽象性.
教學過程:
(一)引入新課:
上一節課我們講了函數的概念:一般地,設在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數.
生活中有很多實例反映了函數關系,你能舉出一個,并指出式中的自變量與函數嗎?
1、學校計劃組織一次春游,學生每人交30元,求總金額y(元)與學生數n(個)的關系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學,求所能購買的總數n(個)與單價(a)元的'關系.
解:1、y=30n
y是函數,n是自變量
2、n是函數,a是自變量.
(二)講授新課
剛才所舉例子中的函數,都是利用數學式子即解析式表示的.這種用數學式子表示函數時,要考慮自變量的取值必須使解析式有意義.如第一題中的學生數n必須是正整數.
例1、求下列函數中自變量x的取值范圍.
(1)(2)
(3)(4)
(5)(6)
分析:在(1)、(2)中,x取任意實數,與都有意義.
(3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
第(5)小題,是二次根式,二次根式成立的條件是被開方數大于、等于零.的被開方數是.
同理,第(6)小題也是二次根式,是被開方數,
小結:從上面的例題中可以看出函數的解析式是整數時,自變量可取全體實數;函數的解析式是分式時,自變量的取值應使分母不為零;函數的解析式是二次根式時,自變量的取值應使被開方數大于、等于零.
注意:有些同學沒有真正理解解析式是分式時,自變量的取值應使分母不為零,片面地認為,凡是分母,只要即可.教師可將解題步驟設計得細致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯接,在這里就直接拿過來用.限于初中學生的接受能力,教師可聯系日常生活講清“且”與“或”.說明這里與是并且的關系.即2與-1這兩個值x都不能取.
例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費是每輛一次0.5元,一般車保管費是每次一輛0.3元.
(1)若設一般車停放的輛次數為x,總的保管費收入為y元,試寫出y關于x的函數關系式;
(2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費總數的范圍.
解:(1)
(x是正整數,
(2)若變速車的輛次不小于25%,但不大于40%,
則收入在1225元至1330元之間
總結:對于反映實際問題的函數關系,應使得實際問題有意義.這樣,就要求聯系實際,具體問題具體分析.
對于函數,當自變量時,相應的函數y的值是.60叫做這個函數當時的函數值.
例3、求下列函數當時的函數值:
(1)————(2)—————
(3)————(4)——————
注:本例既鍛煉了學生的計算能力,又創設了情境,讓學生體會對于x的每一個值,y都有唯一確定的值與之對應.以此加深對函數的理解.
(二)小結:
這節課,我們進一步地研究了有關函數的概念.在研究函數關系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并能求出其相應的函數值.另外,對于反映實際問題的函數關系,要具體問題具體分析.
作業:習題13.2A組2、3、5
今天的內容就介紹到這里了。
初中數學教案6
三維目標
一、知識與技能
1.能靈活列反比例函數表達式解決一些實際問題.
2.能綜合利用物理杠桿知識、反比例函數的知識解決一些實際問題.
二、過程與方法
1.經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題.
2. 體會數學與現實生活的緊密聯系,增強應用意識,提高運用代數方法解決問題的能力.
三、情感態度與價值觀
1.積極參與交流,并積極發表意見.
2.體驗反比例函數是有效地描述物理世界的重要手段,認識到數學是解決實際問題和進行交流的重要工具.
教學重點
掌握從物理問題中建構反比例函數模型.
教學難點
從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數模型,教學時注意分析過程,滲透數形結合的思想.
教具準備
多媒體課件.
教學過程
一、創設問題情境,引入新課
活動1
問 屬:在物理學中,有很多量之間的變化是反比例函數的關系,因此,我們可以借助于反比例函數的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培.
(1)求I與R之間的函數關系式;
(2)當電流I=0.5時,求電阻R的值.
設計意圖:
運用反比例函數解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力.
師生行為:
可由學生獨立思考,領會反比例函數在物理學中的綜合應用.
教師應給“學困生”一點物理學知識的引導.
師:從題目中提供的信息看變量I與R之間的反比例函數關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數k的值.
生:(1)解:設I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當I=0.5時,R=10I=100.5 =20(歐姆).
師:很好!“給我一個支點,我可以把地球撬動.”這是哪一位科學家的名言?這里蘊涵著什么 樣的原理呢?
生:這是古希臘科學家阿基米德的名言.
師:是的.公元前3世紀,古希臘科學家阿基米德發現了著名的“杠桿定律”: 若兩物體與支點的'距離反比于其重量,則杠桿平衡,通俗一點可以描述為;
阻力×阻力臂=動力×動力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動2
小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動力F與動力臂l有怎樣的函數關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?
(2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?
設計意圖:
物理學中的很多量之間的變化是反比例函數關系.因此,在這兒又一次借助反比例函數的圖象和性質解決一些物理學中的問題,即跨學科綜合應用.
師生行為:
先由學生根據“杠桿定律”解決上述問題.
教師可引導學生揭示“杠桿乎衡”與“反比例函數”之間的關系.
教師在此活動中應重點關注:
①學生能否主動用“杠桿定律”中杠桿平衡的條件去理解實際問題,從而建立與反比例函數的關系;
②學生能否面對困難,認真思考,尋找解題的途徑;
③學生能否積極主動地參與數學活動,對數學和物理有著濃厚的興趣.
師:“撬動石頭”就意味著達到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據“杠桿定律” 有
Fl=1200×0.5.得F =600l
當l=1.5時,F=6001.5 =400.
因此,撬動石頭至少需要400牛頓的力.
(2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據“杠桿定律”有
Fl=600,
l=600F .
當F=400×12 =200時,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F=600l .
而F≤400×12 =200時.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動力臂至少要加長1.5米.
生:還可由函數圖象,利用反比例函數的性質求出.
師:很棒!請同學們下去親自畫出圖象完成,現在請同學們思考下列問題:
用反比例函數的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?
生:因為阻力和阻力臂不變,設動力臂為l,動力為F,阻力×阻力臂=k(常數且k>0),所以根據“杠桿定理”得Fl=k,即F=kl (k為常數且k>0)
根據反比例函數的性質,當k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.
師:其實反比例函數在實際運用中非常廣泛.例如在解決經濟預算問題中的應用.
活動3
問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調至0.55~0.75元之間,經測算,若電價調至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當x=0.65元時,y=0.8.(1)求y與x之間的函數關系式;(2)若每度電的成本價0.3元,電價調至0.6元,請你預算一下本年度電力部門的純收人多少?
設計意圖:
在生活中各部門,經常遇到經濟預算等問題,有時關系到因素之間是反比例函數關系,對于此類問題我們往往由題目提供的信息得到變量之間的函數關系式,進而用函數關系式解決一個具體問題.
師生行為:
由學生先獨立思考,然后小組內討論完成.
教師應給予“學困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數關系為y=15x-2
(2)根據題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數關系,把x-0.4看成一個變量,于是可設出表達式,再由題目的條件x=0.65時,y=0.8得出字母系數的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動4
一定質量的二氧化碳氣體,其體積y(m3)是密度ρ(kg/m3)的反比例函數,請根據下圖中的已知條件求出當密度ρ=1.1 kg/m3時二氧化碳氣體的體積V的值.
設計意圖:
進一步體現物理和反比例函數的關系.
師生行為
由學生獨立完成,教師講評.
師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數關系.
生:V和ρ的反比例函數關系為:V=990ρ .
生:當ρ=1.1kg/m3根據V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當密度ρ=1. 1 kg/m3時二氧化碳氣體的氣體為900m3.
四、課時小結
活動5
你對本節內容有哪些認識?重點掌握利用函數關系解實際問題,首先列出函數關系式,利用待定系數法求出解 析式,再根據解析式解得.
設計意圖:
這種形式的小結,激發了學生的主動參與意識,調動了學生的學習興趣,為每一位學生都創造了在數學學習活動中獲得成功的體驗機會,并為程度不同的學生提供了充分展示自己的機會,尊重學生的個體差異,滿足多樣化的學習需要,從而使小結不流于形式而具有實效性.
師生行為:
學生可分小組活動,在小組內交流收獲, 然后由小組代表在全班交流.
教師組織學生小結.
反比例函數與現實生活聯系非常緊密,特別是為討論物理中的一些量之間的關系打下了良好的基礎.用數學模型的解釋物理量之間的關系淺顯易懂,同時不僅要注意跨學科間的綜合,而本學科知識間的整合也尤為重要,例如方程、不等式、函數之間的不可分割的關系.
板書設計
17.2 實際問題與反比例函數(三)
1.
2.用反比例函數的知識解釋:在我們使 用撬棍時,為什么動 力臂越長越省力?
設阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數且k>0).動力和動力臂分別為F,l.則根據杠桿定理,
Fl=k 即F=kl (k>0且k為常數).
由此可知F是l的反比例函數,并且當k>0時,F隨l的增大而減小.
活動與探究
學校準備在校園內修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數關系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數表達式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應控制在什么范圍內?
x(m) 10 20 30 40
y(m)
過程:點A(40,10)在反比例函數圖象上說明點A的橫縱坐標滿足反比例函數表達式,代入可求得反比例函數k的值.
結果:(1)綠化帶面積為10×40=400(m2)
設該反比例函數的表達式為y=kx ,
∵圖象經過點A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數表達式為y=400x .
(2)把x=10,20,30,40代入表達式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應大于等于10m。
初中數學教案7
一、函數思維的哲學思考
1.函數思維。關于什么是函數思維,相關學者做了大量的研究,從不同的角度提出了自己的觀點。本文兼取眾家之長,并結合實際教學經驗,認為函數思維其實是對不同變量關系的思考,這與函數的“變量相互聯系”概念相契合。如果從宏觀的角度來看,函數其實就是研究動態中的相對靜止(沒有絕對的靜止)關系,動態指的是函數中的“變量因子”不斷變化,而相對靜止指的是函數A在一定范圍內保持“定值”。從微觀的角度來分析,可以將它描述為函數A=f(B、C…),其中A表示相對固定的“定量”(也可以表述為被研究的量),B,C,…分別表示為與A有關系并且可以影響到A的因素。那么,理清函數A=f(B、C…)的關系、規律,并能夠解決問題的思維就被稱為函數思維。解題思維指的是對于具體一道題的求解過程中的詳細思考、具體方法,也是從宏觀思維向微觀操作過渡、落實的過程。因此,我們首先從宏觀上把握,確定“定量”和“變量”,以及它們之間的關系。然后從微觀上進行具體地操作,將“定量”設成一個字母,在例題的表述中找到各個變量與定量的關系(一般為等式關系,也有可能是其他關系),用已知的變量將設定的定量表示出來,也是根據題意列等式的過程。
2.哲學方法論上的思考。思維是對客觀存在的理性認識,它所反映的是集合事物中共同的特征、本質的屬性和內在的規律。因此,函數思維反映的就是一類數學問題(如等式、不等式、一次方程、二次方程等)中各個數學元素的共同點,本質的屬性及其定理(也就是規律)。我們從哲學方法論上來看,函數思維主要反映了以下內容:
一是聯系,主要指的是定量與變量之間,變量與變量之間的相互作用。在定量相對穩定的情況下,變量之間可能是正比關系,也可能是反比關系。有時可以用定理來描述變量之間的關系,有時用變量將定量演繹出來。例如A=f(B、C…)中,由于等式的存在,可以將A和C等其他變量用B表示出來,然后代入到其他式子中,對A進行求解或者求證。
二是變化,唯物主義認為,物質總是在動態中不斷變化、發展著的,而且這種變化的原因在于事物內部的各種因素(因子)。函數的本質在于它是變量,是在動態中尋找答案的過程。在A=f(B、C…)中,B、C等因子的變化,必定會引起A的變化。這在方程中表現得最為突出,x、y的變化,影響著直線、曲線的走向。
三是規律性,規律指的是事物之間的內在的必然聯系,它決定著事物發展的方向,具有必然性、普遍性、客觀性、永恒性等特點。函數中的定理是眾多數學研究者、工作者在分析研究變量的基礎上,經過總結、抽象而得出的一般性規則。這些規則對于函數來說是規律,對于具體的解題來說是定理。這些定理對于解題具有重要的作用。例如,二次函數y=ax2+bx+c(a、b、c是常數,且a≠0)中就存在這樣的規則:若a>0,則曲線開口向上;若a
綜上所述,哲學方法論上的思考主要是為了讓學生明白函數中存在著豐富的哲學內涵知識,知道這些是為了更好地解決現實中的問題,從而較好地把握解決問題的方向和信心。
二、函數思維的培養方法分析
1.穩步推進法。穩步推進的過程是學習內容從簡單到復雜,從容易到困難,學生的認知是一步一步向前遞進的。由于此法是在初學內容的基礎上,對于后學內容進行的可預見、可推導過程,因此,對于學生的思維能力培養來說是非常有益的,能夠增強他們的探索能力與自學能力。初中函數部分中有許多內容具有“前后一體,承前啟后”的特征。例如,一元一次方程、一元二次方程、二元二次方程之間;一次函數、正比例函數、反比例函數、開口、頂點式、象限;sin?茲(正弦)、cos?茲(余弦)、tan?茲(正切)、cot?茲(余切)等。這些內容有些是前者推出了后者(例如與),有些則是在前面的式中設定條件而得出了后者(一元二次方程與頂點式)。因此,我們在教學中就可以刻意的讓學生明白后面的知識內容是前面內容的擴展,以激起學生主動探索學習的興趣。例如,在一個限速40km/h以內的道路上,有A、B兩車相向而行,由于車速太快,在同時剎車的情況下,兩車還是相撞了。事后測量出A車的剎車距離為13m,B車為大于10m且小于20m。問A、B兩車誰超速了?針對這一問題,如果學生的思維僅僅停留在應用題的表面描述,那永遠不知道誰超速了。此時,教師應該引導學生思考一下以前學過的.有關距離、速度、時間之間關系的內容。通過回憶,讓學生們想到了學過的S=vt公式,挖出了隱含的速度、時間兩個變量。此時教師再給出剎車距離與速度之間的關系,學生們就不難理解了。由此根據已知的條件,采用列解析式的方法,很快就能算出答案,找到兩車相撞的原因了。
2.問題引導法。問題引導法的實質是對事物或者某種固定的解決模式提出自己的疑問,并提出新觀點、新思考,并且運用各種證據,證明新觀點的正確性。它的過程是在學習教學內容的基礎上,針對某一個變式或者某一個解題過程提出自己的解決辦法,這對于培養學生的創新性思維能力具有重要的作用。具體的做法有:一是教師在臨下課的時候,針對下一課要學習的內容提出相關問題,要求學生在課后自己思考;二是在課堂教學的過程中,啟發學生此種題型還有另外一種解決方法,要求學生從不同的角度、不同的方向去解決它。例如,在學習一元一次方程的內容后,老師可以讓學生們仿照一元一次方程的學習法,在x、y軸上畫出一元二次方程的圖形,并仔細觀察圖形,思考一下它有哪些特點,圖形的變化是否與一元二次方程式中的各個常數有關等。也可以在學習完正弦后,模仿著畫出余弦、正切、余切等的圖形,觀察一下它們之間有何區別。
3.合作學習法。合作學習法是將學生劃分成幾個學習小組或者由學生自行組成學習小團體,在解題過程中借助大家的思維,彼此交流,集思廣益,從而達到整體思維能力的提高。合作學習法的優勢很明顯,一是不同學生的思維習慣、思維優勢在集體中達到了優勢互補,將集體思維能力發揮到了最大;二是在集體思維的過程中,學生之間可以互相借鑒、互相影響,學習到他人的思維優勢能力,同時還可以使集體內的所有成員共同進步。例如常見的求極值問題:用周長為30m的竹桿在一面靠墻的情況下圍成一個矩形的花園,問怎么圍才能使花園的面積最大?對于這樣一個應用題,教師可以讓學生們組隊進行討論,拿出自己的解決辦法。有些團隊可能會選擇直接畫圖,有些團隊可能會用x、y軸進行分析,有些可能會用解析式進行數理運算。在整個求解中,教師最終的評價可以只重小組討論的過程,而忽略結果是否正確,這樣做的目的就是為了訓練學生在團隊中的思維能力。
初中數學教案8
教學內容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關系。
教學目標:1、通過對"撲克"有趣的研究,培養起學生對生活中平常小事的關注。
2、調動學生豐富的聯想,養成一種思考的習慣。
教學重難點:"撲克"與年月日、季度的聯系。
教學過程:
一、談話引入
師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的.了解呢?
生:......
(教師補充,引發學生的好奇心。)
師: "撲克"還有一種作用,而且與數學有關!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數
所有牌的和+小王+大王=閏年的天數
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的和=一個季度的天數
一種花色有13張牌=一個季度有13個星期
三、小結
生活中有很多的數學,他每時每刻都在我們的身邊出現,只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。
初中數學教案9
教學建議
知識結構
重難點分析
本節的重點是的性質和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。的這些性質和判定定理即是平行四邊形性質與判定的延續,又是以后要學習的正方形的基礎。
本節的難點是性質的靈活應用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。
教法建議
根據本節內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:
1.的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.在現實中的實例較多,在講解的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.
3.如果條件允許,教師在講授這節內容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4.在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.
5.由于和的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學目標
1.掌握概念,知道與平行四邊形的關系.
2.掌握的性質.
3.通過運用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養學生的學習興趣.
5.根據平行四邊形與矩形、的從屬關系,通過畫圖向學生滲透集合思想.
6.通過性質的學習,體會的圖形美.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:的性質定理.
2.教學難點:把的性質和直角三角形的知識綜合應用.
3.疑點:與矩形的性質的區別.
四、課時安排
1課時
五、教具學具準備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
【復習提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成、,求矩形的'周長.
【引入新課】
我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質,應突出兩條:
(1)強調是平行四邊形.
(2)一組鄰邊相等.
2.的性質:
教師強調,既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質,此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質.
下面研究的性質:
師:同學們根據的定義結合圖形猜一下有什么性質(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).
生:因為是有一組鄰邊相等的平行四邊形,所以根據平行四邊形對邊相等的性質可以得到.
性質定理1:的四條邊都相等.
由的四條邊都相等,根據平行四邊形對角線互相平分,可以得到
性質定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導學生完成定理的規范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關系?
生:全等.
師:它們的底和高和兩條對角線有什么關系?
生:分別是兩條對角線的一半.
師:如果設的兩條對角線分別為、,則的面積是什么?
生:
教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
(引導學生用定義來判定.)
例3已知的邊長為,,對角線,相交于點,如右圖,求這個的對角線長和面積.
(1)按教材的方法求面積.
(2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結、擴展】
1.小結:(打出投影)(圖4)
(1)、平行四邊形、四邊形的從屬關系:
(2)性質:圖5
①具有平行四邊形的所有性質.
②特有性質:四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業
教材P158中6、7、8,P196中10
九、板書設計
標題
定義……
性質例2…… 小結:
性質定理1:……例3…… ……
性質定理2:……
十、隨堂練習
教材P151中1、2、3
補充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數為___________、____________.
初中數學教案10
一、教材分析
本節課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節多邊形內角和。
二、教學目標
1、知識目標:了解多邊形內角和公式。
2、數學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態度目標:通過猜想、推理活動感受數學活動充滿著探索以及數學結論的確定性,提高學生學習熱情。
三、教學重、難點
重點:探索多邊形內角和。
難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
四、教學方法:引導發現法、討論法
五、教具、學具
教具:多媒體課件
學具:三角板、量角器
六、教學媒體:大屏幕、實物投影
七、教學過程:
(一)創設情境,設疑激思
師:大家都知道三角形的內角和是180,那么四邊形的內角和,你知道嗎?
活動一:探究四邊形內角和。
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數,然后把四個角加起來,發現內角和是360。
方法二:把兩個三角形紙板拼在一起構成四邊形,發現兩個三角形內角和相加是360。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內角和。
學生先獨立思考每個問題再分組討論。
關注:
(1)學生能否類比四邊形的方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內角和)
方法1:把五邊形分成三個三角形,3個180的和是540。
方法2:從五邊形內部一點出發,把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結果得540。
方法3:從五邊形一邊上任意一點出發把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結果得540。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結果得540。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的'討論方法最終得出,六邊形內角和是720,十邊形內角和是1440。
(二)引申思考,培養創新
師:通過前面的討論,你能知道多邊形內角和嗎?
活動三:探究任意多邊形的內角和公式。
思考:
(1)多邊形內角和與三角形內角和的關系?
(2)多邊形的邊數與內角和的關系?
(3)從多邊形一個頂點引的對角線分三角形的個數與多邊形邊數的關系?
學生結合思考題進行討論,并把討論后的結果進行交流。
發現1:四邊形內角和是2個180的和,五邊形內角和是3個180的和,六邊形內角和是4個180的和,十邊形內角和是8個180的和。發現2:多邊形的邊數增加1,內角和增加180。
發現3:一個n邊形從一個頂點引出的對角線分三角形的個數與邊數n存在(n-2)的關系。
得出結論:多邊形內角和公式:(n-2)·180。
(三)實際應用,優勢互補
1、口答:(1)七邊形內角和()
(2)九邊形內角和()
(3)十邊形內角和()
2、搶答:(1)一個多邊形的內角和等于1260,它是幾邊形?
(2)一個多邊形的內角和是1440,且每個內角都相等,則每個內角的度數是()。
3、討論回答:一個多邊形的內角和比四邊形的內角和多540,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?
(四)概括存儲
學生自己歸納總結:
1、多邊形內角和公式
2、運用轉化思想解決數學問題
3、用數形結合的思想解決問題
(五)作業:練習冊第93頁1、2、3
八、教學反思:
1、教的轉變
本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發現結論后,利用幾何畫板直觀地展示,激發學生自覺探究數學問題,體驗發現的樂趣。
2、學的轉變
學生的角色從學會轉變為會學。本節課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變
整節課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預,教學過程呈現一種比較流暢的特征。整節課學生與學生,學生與教師之間以“對話”、“討論”為出發點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。
初中數學教案11
一、預習方法
預習是上課前對即將要上的數學內容進行閱讀,了解其梗概,做到心中有數,以便掌握聽課的主動權。由于預習是獨立學習的常嘗試,對學習內容是否正確理解,能否把握其重點,關鍵,洞察到隱含的思想方法等,都能在聽課中得到檢驗,加強或矯正,有利于提高他們的學習和養成自學的習慣,所以它是數學學習中的重要一環。在指導學生預習時應要求學生做到:一是粗讀,先粗略瀏覽教材的有關內容,掌握本節知識的概貌。二是細讀,對重要概念、公式、法則、定理反復閱讀、體會、思考,注意知識的形成過程,對難以理解的概念作出記號,以便帶著疑問去聽課。方法上可采用隨課預習或單元預習。預習前教師先布置預習提綱,使學生有的放矢。實踐證明,養成良好的預習習慣,能使學生變被動學習為主動學習,同時能逐漸培養學生的自學能力。
二、初中生課上的學習方法
課堂學習是學習過程中最基本,最重要的環節,要堅持做到“五到”即耳到、眼到、口到、心到、手到;
1、看:就是上課要注意觀察,觀察教師板書的過程、內容、理解老師所講的內容。
2、聽:就是直接用感官接受知識,應在聽的過程中明確:
(1)聽每節課的學習目的和學習要求;
(2)聽新知識的.引入及知識的形成過程;
(3)理解教師對新課的重點、難點的剖析;
(4)聽例題解法的思路和數學思想方法的體現。
3、思:就是指思考問題,要做到:(1)多思、勤思,隨聽隨思;(2)深思,即追根溯源地思考,要善于大膽提出問題,如:本節課教師為什么要這樣講?這道題為什么要這樣做?等等;(3)善思,由聽和觀察去聯想、猜想、歸納;(4)樹立辯證意識,學會反思。
4、記:就是指記課堂筆記。
(1)記筆記服從聽講,要結合教材來記,要掌握記錄時機;
(2)記要點、記疑問、記易錯點、記解題思路和方法、記老師所補充的內容;
(3)記小結、記課后思考題。記是為聽和思服務的。記筆記有助于將知識簡化、深化、系統化。
三、完成作業的方法
課后往往學生容易急于完成書面作業,忽視必要的鞏固、記憶、復習。以致出現照例題模仿、套公式解題的現象,造成為交作業而做作業,更起不到作業的練習鞏固、深化理解知識的應有作用。為此在這個環節的學法指導上要求學生每天先閱讀教材,結合筆記記錄的重點、難點,回顧課堂講授的知識、方法,同時記憶公式、定理(記憶方法有類比記憶、聯想記憶、直觀記憶等)。然后獨立完成作業,解題后再反思。通常,數學作業表現為解題,解題要運用所學的知識和方法。因此,在做作業前許要先復習,在基本理解與掌握所學教材的基礎上進行,否則事倍功半,花費了時間,得不到應有的效果。
解題,要按一定的程序,步驟進行。首先,要弄清題意,認真讀題,仔細理解題意。如哪些是已知的數據,條件,哪些是未知數,結論,題中涉及到哪些運算,它們相互之間是怎樣聯系的,能否用圖表示出來等,要詳加推敲,徹底弄清。其次,在弄清題意的基礎上,探索解題的途徑,找出已知與未知,條件與結論之間的聯系。回憶與之有關的知識和方法,學過的例題,解過的題目等,并從形式到內容,從已知數,條件到未知數,結論,考慮能否利用它們的結果或方法,可否引進適當輔助元素后加以利用;是否能找出與該題有關的一個特殊問題或一個一般問題或一個類似問題,考察解決它們對當前問題有什么啟發,能否把條件分開,一部分一部分加以考察或變更,再重新組合,以達到所求結果等等。這就是說,在探索解題過程中,需要運用聯想,比較,引入輔助元素,類比,特殊化,一般化,分析,綜合等一系列方法,并從解題中學會這一系列探索的方法。在探索解題方法中,如何靈活運用知識和方法具有重要意義,也是培養能力的一個極好機會。第三,根據探索得到的解題方案,按照所要求的書寫格式和規范,把解題過程敘述出來,并力求簡單,明白,完整。最后,還要對解題進行回顧,檢查解答是否正確無誤,每步推理或運算是否立論有據,答案是否詳盡無遺;思考一下解題方法可否改進或有否新的解法,該題結果能否推廣等,并小結一下解題的經驗,進而發展與完善解題的思想方法,總結出帶有規律性的東西來。第四,在作業書寫方面也應注意“寫法”指導,要求學生書寫格式要規范、條理要清楚。
初中數學教案12
教學目標:
1.會用待定系數法求反比例函數的解析式.
2.通過實例進一步加深對反比例函數的認識,能結合具體情境,體會反比例函數的意義,理解比例系數的具體的意義.
3.會通過已知自變量的值求相應的反比例函數的值.運用已知反比例函數的值求相應自變量的值解決一些簡單的問題.
重點:用待定系數法求反比例函數的解析式.
難點:例3要用科學知識,又要用不等式的知識,學生不易理解.
教學過程:
一.復習
1、反比例函數的定義:
判斷下列說法是否正確(對‖√‖,錯‖3‖)
(1)一矩形的面積為20cm2,相鄰的兩條邊長分別為x(cm)和y(cm),變量y是變量x的反比例函數.(2)圓的.面積公式s??r2中,s與r成正比例.(3)矩形的長為a,寬為b,周長為C,當C為常量時,a是b的反比例函數.方形的邊長為x,高為y,當其體積V為常量時,y是x的反比例函數.(4)一個正四棱柱的底面正
定時,商和除數成反比例.(5)當被除數(不為零)一
(6)計劃修建鐵路1200km,則鋪軌天數y(d)是每日鋪軌量x(km/d)的反比例函數.
2、思考:如何確定反比例函數的解析式?
(1)已知y是x的反比例函數,比例系數是3,則函數解析式是_______
(2)當m為何值時,函數4是反比例函數,并求出其函數解析式.y?2m?2關鍵是確定比例系數!x
二.新課
1.例2:已知變量y與x成反比例,且當x=2時y=9,寫出y與x之間的函數解析式和自變量的取值范圍。小結:要確定一個反比例函數y?k的解析式,只需求出比例系數k。如果已知一對自變量與函數的對應值,x
3時,y=2,求這個函數的解析式和自變量的取值范圍。4就可以先求出比例系數,然后寫出所要求的反比例函數。2.練習:已知y是關于x的反比例函數,當x=?
3.說一說它們的求法:
(1)已知變量y與x-5成反比例,且當x=2時y=9,寫出y與x之間的函數解析式.
(2)已知變量y-1與x成反比例,且當x=2時y=9,寫出y與x之間的函數解析式.
4.例3、設汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過電流的強度為I(A)。
(1)已知一個汽車前燈的電阻為30Ω,通過的電流為0.40A,求I關于R的函數解析式,并說明比例系數的實際意義。
(2)如果接上新燈泡的電阻大于30Ω,那么與原來的相比,汽車前燈的亮度將發生什么變化?
在例3的教學中可作如下啟發:
(1)電流、電阻、電壓之間有何關系?
(2)在電壓U保持不變的前提下,電流強度I與電阻R成哪種函數關系?
(3)前燈的亮度取決于哪個變量的大小?如何決定?
先讓學生嘗試練習,后師生一起點評。
三.鞏固練習:
1.當質量一定時,二氧化碳的體積V與密度p成反比例。且V=5m3時,p=1.98kg/m3
(1)求p與V的函數關系式,并指出自變量的取值范圍。
(2)求V=9m3時,二氧化碳的密度。
四.拓展:
1.已知y與z成正比例,z與x成反比例,當x=-4時,z=3,y=-4.求:
(1)Y關于x的函數解析式;
(2)當z=-1時,x,y的值.
2.已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時,y的
值都等于10,求y與x之間的函數關系。
五.交流反思
求反比例函數的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數關系,如例2;另一種是變量之間的關系由已學的數量關系直接給出,如例3中的I?
六、布置作業:P4B組
教學后記:
U由歐姆定律得到。R
初中數學教案13
教學目標
使學生進一步理解立方根的概念,并能熟練地進行求一個數的立方根的運算;
能用有理數估計一個無理數的大致范圍,使學生形成估算的意識,培養學生的估算能力;
經歷運用計算器探求數學規律的過程,發展合情推理能力。
教學難點
用有理數估計一個無理的大致范圍。
知識重點
用有理數估計一個無理的大致范圍。
對于計算器的使用,在教學中采用學生自己閱讀計算器的說明書、自己操作練習來掌握用計算器進行開立方運算的方法,并讓學生互相交流,讓學生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數量間的關系與變化帶來方便。在教學過程中,教師要關注學生能否通過閱讀,掌握用計算器進行開立方運算的簡單操作;能否利用計算器探究數量間的關系,從而尋找出數量的變化關系。
使用計算器進行復雜運算,可以使學生學習的重點更好地集中到理解數學的本質上來,而估算也是一種具有實際應用價值的運算能力,在本節課的課堂教學中綜合運用筆算、計算器和估算等培養學生的運算能力。知識點一:多邊形的概念
⑴多邊形定義:在平面內,由一些線段首位順次相接組成的圖形叫做________、
如果一個多邊形由n條線段組成,那么這個多邊形叫做____________。(一個多邊形由幾條線段組成,就叫做幾邊形、)
多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序。如五邊形ABCDE。
⑵多邊形的邊、頂點、內角和外角、
多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________、
⑶多邊形的對角線
連接多邊形的不相鄰的`兩個頂點的線段,叫做___________________、畫一個五邊形ABCDE,并畫出所有的對角線。知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形、
知識點二:正多邊形
各個角都相等,各條邊都相等的多邊形叫做_____________、
探究多邊形的對角線條數
知識點三:多邊形的內角和公式推導
1、我們知道三角形的內角和為__________、
2、我們還知道,正方形的四個角都等于____°,那么它的內角和為_____°,同樣長方形的內角和也是______°、
3、正方形和長方形都是特殊的四邊形,其內角和為360度,那么一般的四邊形的內角和為多少呢?
4、畫一個任意的四邊形,用量角器量出它的四個內角,計算它們的和,與同伴交流你的結果、從中你得到什么結論?
探究1:任意畫一個四邊形,量出它的4個內角,計算它們的和、再畫幾個四邊形,?量一量、算一算、你能得出什么結論?能否利用三角形內角和等于180?°得出這個結論?結論:。
探究2:從上面的問題,你能想出五邊形和六邊形的內角和各是多少嗎?觀察圖3,?請填空:
(1)從五邊形的一個頂點出發,可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內角和等于180°×______、
(2)從六邊形的一個頂點出發,可以引_____條對角線,它們將六邊形分為_____個三角形,六邊形的內角和等于180°×______、探究3:一般地,怎樣求n邊形的內角和呢?請填空:
從n邊形的一個頂點出發,可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內角和等于180°×______、
綜上所述,你能得到多邊形內角和公式嗎?設多邊形的邊數為n,則
n邊形的內角和等于______________、
想一想:要得到多邊形的內角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形、除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內角和公式嗎?
知識點四:多邊形的外角和
探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和、六邊形的外角和等于多少?
問題:如果將六邊形換為n邊形(n是大于等于3的整數),結果還相同嗎?多邊形的外角和定理:。理解與運用
例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°、求:∠B與∠D的關系、
自我檢測:
(一)、判斷題、
1、當多邊形邊數增加時,它的內角和也隨著增加、()
2、當多邊形邊數增加時、它的外角和也隨著增加、()
3、三角形的外角和與一多邊形的外角和相等、()
4、從n邊形一個頂點出發,可以引出(n一2)條對角線,得到(n一2)個三角形、()
5、四邊形的四個內角至少有一個角不小于直角、()
(二)、填空題、
1、一個多邊形的每一個外角都等于30°,則這個多邊形為
2、一個多邊形的每個內角都等于135°,則這個多邊形為
3、內角和等于外角和的多邊形是邊形、
4、內角和為1440°的多邊形是
5、若多邊形內角和等于外角和的3倍,則這個多邊形是邊形、
6、五邊形的對角線有
7、一個多邊形的內角和為4320°,則它的邊數為
8、多邊形每個內角都相等,內角和為720°,則它的每一個外角為
9、四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠、
10、四邊形的四個內角中,直角最多有個,鈍角最多有銳角最
(三)解答題
1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?
2、在每個內角都相等的多邊形中,若一個外角是它相鄰內角的則這個多邊形是幾邊形?
3、若一個多邊形的內角和與外角和的比為7:2,求這個多邊形的邊數。
4、一個多邊形的每一個內角都等于其相等外角的
5、一個多邊形少一個內角的度數和為2300°、
(1)求它的邊數;
(2)求少的那個內角的度數、
初中數學教案14
1.知識結構
2.重點和難點分析
重點:本節的重點是平行四邊形的概念和性質.雖然平行四邊形的概念在小學學過,但對于概念本質屬性的理解并不深刻,為了加深學生對概念的理解,為以后學習特殊的平行四邊形打下基礎,所以教師不要忽視平行四邊形的概念教學.平行四邊形的性質是以后證明四邊形問題的基礎,也是學好全章的關鍵.尤其是平行四邊形性質定理的推論,推論的應用有兩個條件:
一個是夾在兩條平行線間;
一個是平行線段,具備這兩個條件才能得出一個結論平行線段相等,缺少任何一個條件結論都不成立,這也是學生容易犯錯的地方,教師要反復強調.
難點:本節的難點是平行四邊形性質定理的靈活應用.為了能熟練的應用性質定理及其推論,要把性質定理和推論的條件和結論給學生講清楚,哪幾個條件,決定哪個結論,如何用數學符號表示即書寫格式,都要在講練中反復強化.
3.教法建議
(1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調動學生的積極性.自己設計了一個動畫,建議老師們用它作為本節的引入,既可以激發學生的學習興趣,又可以激活學生的思維.
(2)在生產或生活中,平行四邊形是常見圖形之一,教師可以多給學生提供一些平行四邊形的圖片,增加學生的感性認識,然后,讓他們自己總結出平行四邊形的定義,教師最后做總結.平行四邊形是特殊的四邊形,要判定一個四邊形是不是平行四邊形,要判斷兩點:首先是四邊形,然后四邊形的兩組對邊分別平行.平行四邊形的定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質.
(3)對于教師來說講課固然重要,但講完課后有目的的強化訓練也是不可缺少的,通過做題,幫助學生更好的理解所講內容,也就是我們平時說的要反思回顧,總結深化.
平行四邊形及其性質第一課時
一、素質教育目標
(一)知識教學點
1.使學生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.
2.掌握平行四邊形的性質定理1、2.
3.并能運用這些知識進行有關的證明或計算.
(二)能力訓練點
1.知道解決平行四邊形問題的基本思想是化為三角形問題來處理,滲透轉化思想.
2.通過推導平行四邊形的性質定理的過程,培養學生的推導、論證能力和邏輯思維能力.
(三)德育滲透點
通過要求學生書寫規范,培養學生科學嚴謹的學風.
(四)美育滲透點
通過學習,滲透幾何方法美和幾何語言美及圖形內在美和結構美
二、學法引導
閱讀、思考、講解、分析、轉化
三、重點·難點·疑點及解決辦法
1.教學重點:平行四邊形性質定理的應用
2.教學難點:正確理解兩條平行線間的距離的概念和運用性質定理2的推論;在計算或證明中綜合應用本節前一章的'知識.
3.疑點及解決辦法:關于性質定理2的推論;兩點的距離,點到直線的距離,兩平行直線中間的距離的區別與聯系,注重對概念的教學,使學生深刻理解上述概念,搞清它們之間的關系;平行四邊形的高有關問題.
四、課時安排
2課時
五、教具學具準備
教具(做兩個全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具
六、師生互動活動設計
教師復習提問,學習思考口答;教師設疑引思,學生討論分析;師生共同總結結論,教師示范講解,學生達標練習
第一課時
七、教學步驟
【復習提問】
1.什么叫做四邊形?什么叫四邊形的一組對邊?
2.四邊形的兩組對邊在位置上有幾種可能?
(教師隨著學生回答畫出圖1)
圖1
【引入新課】
在四邊形中,我們常見的實用價值最大的就是平行四邊形,如汽車的防護鏈,無軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質呢?這是這節課研究的主要內容(寫出課題).
【講解新課】
1.平行四邊形的定義:兩組對邊分別平行的四邊形叫做平行四邊形.
注意:一個四邊形必須具備有兩組對邊分別平行才是平行四邊形,反過來,平行四邊形就一定是有“兩組對邊分別平行”的一個四邊形.因此定義既是平行四邊形的一個判定方法(定義判定法)又是平行四邊形的一個性質.
2.平行四邊形的表示:平行四邊形用符號“
”表示,如圖1就是平行四邊形
,記作“
”.
align=middle>
圖1
3.平行四邊形的性質
講解平行四邊形性質前必須使學生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(共性),同時它又是特殊的四邊形,當然還有其特性(個性),下面介紹的性質就是其特性,這是一般四邊形所不具有的.
平行四邊形性質定理1:平行四邊形的對角相等.
平行四邊形性質定理2:平行四邊形對邊相等.
(教具用兩個全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個定理的方法.如圖2)
圖2如圖3
所以四邊形是平行四邊形,所以.由此得到
推論:夾在兩條平行線間的平行線段相等.
圖3
要注意:必須有兩個平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4
4.平行線間的距離
從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點到另一條直線的距離相等,如圖5.
我們把兩條平行線中一條直線上任意一點到另一條直線的距離,叫做平行線的距離.
圖5
注意:(1)兩相交直線無距離可言.
(2)連結兩點間的線段的長度叫兩點間的距離,從直線外一點到一條直線的垂線段的長,叫點到直線的距離.兩條平行線中一條直線上任意一點到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區別與聯系.
例1 已知:如圖1,
初中數學教案15
一學期的工作結束了,可以說緊張忙碌卻收獲多多。回顧這學期的工作,我教九(4)班的數學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結經驗,吸取教訓,使以后的工作能夠有效、有序地進行,現將教學所得總結如下:
一、在備課方面
在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數。
二、在教學過程方面
在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發現知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的內在規律、性質和聯系。”只有充分發揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發展。但還是難免受傳統教學觀念的影響,加之經驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學校“”的教學模式下,才開始進一步嘗試,并在不斷的嘗試中總結經驗。
三、工作中存在的問題
1)、教材挖掘不深入。
2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。
3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導
4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。
四、今后努力的'方向
1)、加強學習,學習新教學模式下新的教學思想。
2)、熟讀初一到初三的數學教材,深入挖掘教材,進一步把握知識點和考點。
3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發事件方法。
4)、加強轉差培優力度。
5)、加強教學反思,加大教學投入。
一學期的教學工作即將結束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業務水平。
【初中數學教案】相關文章:
初中數學教案12-18
初中數學教案10-26
初中數學教案優秀10-24
【精華】初中數學教案09-09
初中數學教案人教版12-13
人教版初中數學教案11-23
初中數學教案(精選16篇)12-12
初中數學教案(15篇)11-21
初中數學教案14篇10-17
(推薦)初中數學教案15篇08-27