<pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

          <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

          <p id="bbfd9"></p>

          <p id="bbfd9"><cite id="bbfd9"></cite></p>

            <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

            <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
            <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
            應屆畢業生網>主頁 > 手抄報 > 數學手抄報 > 數學手抄報內容:龐加萊猜想

            數學手抄報內容:龐加萊猜想

            發布時間:2017-03-16來源:手抄報資料網

              數學題并不是枯燥無味的,也有很多和我們的生活相關的趣味數學題。小編為大家整理了一些小學生數學趣味題,趕緊行動起來,讓你的數學也充滿色彩吧!

              如果我們伸縮圍繞一個蘋果表面的橡皮帶,那么我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。另一方面,如果我們想象同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那么不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。我們說,蘋果表面是“單連通的”,而輪胎面不是。大約在一百年以前,龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面(四維空間中與原點有單位距離的點的全體)的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。

            啊

              在2002年11月和2003年7月之間,俄羅斯的數學家格里戈里·佩雷爾曼在arXiv.org發表了三篇論文預印本,并聲稱證明了幾何化猜想。

              在佩雷爾曼之后,先后有3組研究者發表論文補全佩雷爾曼給出的證明中缺少的細節。這包括密西根大學的布魯斯·克萊納和約翰·洛特;哥倫比亞大學的約翰·摩根和麻省理工學院的田剛;以及理海大學的曹懷東和中山大學的朱熹平。

              2006年8月,第25屆國際數學家大會授予佩雷爾曼菲爾茲獎。數學界最終確認佩雷爾曼的證明解決了龐加萊猜想。

            欄目推薦
            熱點排行
            推薦閱讀

                    <pre id="bbfd9"><del id="bbfd9"><dfn id="bbfd9"></dfn></del></pre>

                    <ruby id="bbfd9"></ruby><p id="bbfd9"><mark id="bbfd9"></mark></p>

                    <p id="bbfd9"></p>

                    <p id="bbfd9"><cite id="bbfd9"></cite></p>

                      <th id="bbfd9"><form id="bbfd9"><dl id="bbfd9"></dl></form></th>

                      <p id="bbfd9"><cite id="bbfd9"></cite></p><p id="bbfd9"></p>
                      <p id="bbfd9"><cite id="bbfd9"><progress id="bbfd9"></progress></cite></p>
                      飘沙影院